ОСТАПЧЕНКО ЮРИЙ БОРИСОВИЧ

МОДЕЛИ И СРЕДСТВА ПОДГОТОВКИ ПЕРСОНАЛА НАЗЕМНЫХ СЛУЖБ ГРАЖДАНСКОЙ АВИАЦИИ К ПРИНЯТИЮ РЕШЕНИЙ ПО ВЫХОДУ ИЗ НЕШТАТНЫХ СИТУАЦИЙ С ПРИМЕНЕНИЕМ КОМПЛЕКСНОЙ АВТОМАТИЗИРОВАННОЙ СИСТЕМЫ

05.22.14 – Эксплуатация воздушного транспорта

Диссертация на соискание ученой степени кандидата технических наук

Научный руководитель:
Доктор технических наук, старший научный сотрудник
Кудряков Сергей Алексеевич

Санкт-Петербург – 2017
ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ ... 6

ГЛАВА 1. АНАЛИЗ ПРОФЕССИОНАЛЬНОЙ ДЕЯТЕЛЬНОСТИ И ПОДГОТОВКИ НАЗЕМНОГО ПЕРСОНАЛА В ОБЛАСТИ ЭКСПЛУАТАЦИИ АВИАЦИОННОЙ И РАКЕТНО-КОСМИЧЕСКОЙ ТЕХНИКИ В КОНТЕКСТЕ ОБЕСПЕЧЕНИЯ БЕЗОПАСНОСТИ ПОЛЕТОВ ... 21

1.1 Анализ профессиональной деятельности наземного персонала по эксплуатации авиационной и ракетно-космической техники ... 21

1.1.1 Особенности эксплуатации авиационной и ракетно-космической техники как сложных технических систем .. 21

1.1.2 Возникновение нештатных ситуаций как особенность процесса эксплуатации авиационной и ракетно-космической техники. Классификация нештатных ситуаций ... 29

1.1.3 Анализ профессиональной деятельности наземного персонала по эксплуатации авиационной и ракетно-космической техники ... 33

1.2 Анализ процесса профессиональной подготовки наземного персонала по эксплуатации авиационной и ракетно-космической техники ... 38

1.3 Анализ существующих автоматизированных обучающих систем, используемых при подготовке специалистов по эксплуатации авиационной и ракетно-космической техники ... 42

1.4 Постановка задачи исследования .. 51

Выводы по главе 1 .. 52

ГЛАВА 2. РАЗРАБОТКА КОНЦЕПЦИИ И СТРУКТУРНО-ФУНКЦИОНАЛЬНОЙ МОДЕЛИ КОМПЛЕКСНОЙ АВТОМАТИЗИРОВАННОЙ ОБУЧАЮЩЕЙ СИСТЕМЫ ДЛЯ ПРОФЕССИОНАЛЬНОЙ ПОДГОТОВКИ ПЕРСОНАЛА ПО ЭКСПЛУАТАЦИИ АРКТ И МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ЕЕ ИСПОЛЬЗОВАНИЯ ... 54

2.1 Концепция комплексной автоматизированной обучающей системы для профессиональной подготовки персонала АРКТ ... 54

2.2 Структурно-функциональная модель комплексной автоматизированной обучающей системы для профессиональной подготовки персонала АРКТ 55
2.2.1 Назначение и задачи комплексной автоматизированной обучающей системы для профессиональной подготовки персонала АРКТ ... 55
2.2.2 Состав комплексной автоматизированной обучающей системы для профессиональной подготовки персонала АРКТ и сценарии использования ее подсистем ... 56
2.2.3 Структурно-функциональная модель комплексной автоматизированной обучающей системы для профессиональной подготовки персонала АРКТ 65
2.3 Реализация элементов комплексной автоматизированной обучающей системы для профессиональной подготовки персонала АРКТ .. 69
2.3.1 Электронный интерактивный учебник для обучения специалистов по эксплуатации транспортного и подъемно-установочного оборудования СК РН «Союз-2» .. 69
2.3.2 Индивидуальный программный тренажер для обучения номеров расчета стартового комплекса РН «Протон-М» .. 72
2.3.3 Коллективный программный тренажер для обучения номеров расчета заправочного оборудования РН «Союз-2» .. 75
2.3.4 Подсистема информационной поддержки профессиональной деятельности персонала СК РН «Союз-2» .. 76
2.3.5 Подсистема поддержки принятия решений при управлении эксплуатацией РКТ и возникновении НшС на ТК и СК РН «Союз-2» ... 77
2.4 Модели процесса подготовки персонала АРКТ с использованием КАОС 80
2.4.1 Анализ основных моделей обучения ... 80
2.4.2 Построение индивидуальной образовательной траектории при обучении с использованием КАОС .. 85
2.4.3 Использование мониторинга функционального состояния обучаемых и его влияние на оценку сформированности профессиональных компетенций 90
Выводы по главе 2 .. 93

ГЛАВА 3. РАЗРАБОТКА НАУЧНО-МЕТОДИЧЕСКОГО АППАРАТА ПОДГОТОВКИ ПЕРСОНАЛА К ДЕЙСТВИЯМ В НЕШТАТНЫХ СИТУАЦИЯХ ... 95

3.1 Модель развития нештатной ситуации как последовательность принимаемых решений ... 96
3.2 Оценивание последствий возможных решений по выходу из нештатной ситуации ... 102
3.3 Оценивание возможностей реализации различных сценариев развития нештатной ситуации... 110
3.3.1. Оценивание показаний средств измерений вероятностными методами..... 111
3.3.2. Оценивание возможностей реализации сценариев на основе теории нечетких множеств... 118
3.4 Выбор и обоснование критерия принятия решений по выходу из нештатной ситуации .. 129
3.5 Алгоритм принятия решения по выходу из нештатной ситуации.............. 134
Выводы по главе 3 .. 136

ГЛАВА 4. РАЗРАБОТКА МЕТОДИКИ ИСПОЛЬЗОВАНИЯ КАОС И ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ ПО ОЦЕНИВАНИЮ ВЛИЯНИЯ КАОС НА УРОВЕНЬ ПОДГОТОВКИ НАЗЕМНОГО ПЕРСОНАЛА АРКТ...... 137
4.1 Разработка методики использования КАОС для профессиональной подготовки (переподготовки, повышения квалификации) наземного персонала АРКТ 137
4.1.1 Общие положения ... 137
4.1.2 Показатели обученности .. 138
4.1.3 Дифференциация обучаемых и рекомендации по построению индивидуальной траектории обучения ... 139
4.1.4 Рекомендации по реализации 5-го этапа обучения 141
4.2 Ретроспективный анализ действий персонала в нештатной ситуации на основе разработанного научно-методического аппарата ... 141
4.2.1 Последовательность решений, приведших к катастрофе 142
4.2.2 Последовательность решений, которая могла бы привести к выполнению целевой задачи в установленное время................................. 147
4.2.3 Последовательность решений, которая могла бы привести к переносу пуска .. 148
4.2.4 Последовательность решений, которая могла бы привести к отмене пуска 149
4.3 Основные исходные положения экспериментальных исследований 149
4.4 Порядок проведения эксперимента .. 150
4.5 Порядок обработки результатов эксперимента 154
4.6 Расчеты показателей обученности по результатам эксперимента........ 157
4.6.1 Расчеты общепринятого показателя обученности 157
4.6.2 Расчеты частных показателей обученности .. 158
4.7 Анализ результатов экспериментальных исследований 164
Выводы по главе 4 ... 165
ЗАКЛЮЧЕНИЕ ... 167
СПИСОК СОКРАЩЕНИЙ И УСЛОВНЫХ ОБОЗНАЧЕНИЙ 170
СПИСОК ЛИТЕРАТУРЫ ... 172
ПРИЛОЖЕНИЕ А. Основные термины и определения, используемые в работе 186
ВВЕДЕНИЕ

Воздушный транспорт (ВТ), являясь на сегодняшний день одним из основных средств массовой перевозки пассажиров и грузов, играет существенную роль в обеспечении устойчивого экономического и социального развития. Он прямо и косвенно обеспечивает занятость 56,6 млн. человек, его доля в глобальном валовом внутреннем продукте превышает 2,2 трлн. долл. США, он ежегодно осуществляет перевозку свыше 2,9 млрд. пассажиров и 5,3 трлн. грузов [1].

Международная организация гражданской авиации (ИКАО) в своем программном документе «Глобальный аэронавигационный план на 2013 – 2028 гг.» повышение уровня безопасности полетов мировой гражданской авиации определяет как одну из важнейших стратегических целей [1].

Существуют различные определения понятия «безопасность полетов» (БП), которые отражают его различные аспекты. Так, БП – условия, при которых
выполнению полётов летательных аппаратов не угрожает лётное происшествие (частичное или полное разрушение летательного аппарата; гибель или ранение членов экипажа, пассажиров) [137]; БП – комплексная характеристика ВТ и авиационных работ, определяющая способность выполнять полёты с приемлемым уровнем риска и приемлемыми последствиями [28]; ИКАО определяет БП как состояние, при котором риск причинения вреда лицам или нанесения ущерба имуществу снижен до приемлемого уровня и поддерживается на этом либо более низком уровне посредством непрерывного процесса выявления источников опасности и контроля факторов риска [2]; БП – свойство авиационно-транспортной системы (АТС) осуществлять воздушные перевозки без угрозы для жизни и здоровья людей [159].

Основными тенденциями обеспечения требуемого уровня БП являются:
- автоматизация процессов эксплуатации воздушных судов (ВС);
- повышение уровня обученности летного состава, персонала наземных служб эксплуатации.

Чтобы обеспечить требуемый уровень БП необходимо в том числе минимизировать степень влияния эксплуатирующего персонала, задействованного в контурах управления процессом подготовки и применения воздушных судов (ВС) и управления воздушным движением (УВД). Пока этого сделать не удастся, необходимо добиться максимально возможного уровня автоматизации процессов наземной и летной эксплуатации ВС, а также требуемого уровня обученности летного состава, внешних пилотов беспилотных летательных аппаратов, персонала наземных служб эксплуатации, прежде всего – диспетчеров УВД, инженерно-авиационной службы (ИАС), службы эксплуатации радиотехнического оборудования и авиационной электросвязи (ЭРТОС). Одним из направлений снижения влияния человеческого фактора является создание высокоавтоматизированных систем, логическим развитием которых в будущем будет беспилотный полет, что обусловливает все более широкое развитие и применение беспилотных авиационных систем (БАС), получивших в последнее время бурное развитие как за рубежом, так и в нашей стране.
Таким образом, обеспечение БП напрямую зависит от уровня обученности персонала.

Генеральный секретарь ИКАО Раймон Бенджамен, подчеркивая важность проблемы подготовки персонала, отмечает, что в ближайшие 20 лет авиакомпании увеличат свой парк новых самолетов на 25 000 ед.; к 2026 году потребуется порядка 480 000 новых техников для обслуживания этих самолетов и более 350 000 пилотов, чтобы летать на них. При этом в некоторых регионах 40% кадрового состава аэропортов в следующие несколько лет выйдет на пенсию. В других регионах следующее поколение не готово или не способно работать в аэропортах [51].

Эксперты, рассматривая проблему «нового поколения авиационных специалистов» (NGAP), исходят из того, что в настоящее время снизился общий уровень образованности. При этом согласно экспериментальным исследованиям в технических вузах наблюдается дифференциация в характеристиках усвоения учебного материала более чем в 70 раз для обучающихся, объединенных в одну группу [115, 135]. Основные тенденции развития образовательных технологий связаны с широким внедрением в образовательный процесс современных информационных технологий, в частности, дистанционного обучения, виртуальной реальности, средств визуализации, интерактива, а также автоматизированных обучающих систем (АОС), что позволяет лучше учитывать индивидуальные особенности обучающихся. Следует отметить, что и молодые люди предпочитают электронные гаджеты традиционным методам обучения.

Безусловно, существующие в настоящее время АОС (электронные учебники по изучению устройства и технологии, виртуальные процедурные и комплексные тренажеры и т.д.) не могут в полной мере заменить собой натурные образцы летательных аппаратов (ЛА) и наземного технологического оборудования (НТО). Но применение натурных образцов ЛА и НТО в учебных целях зачастую экономически и технически неприемлемо. Использование АОС на основе виртуальных объектов эксплуатации в значительной степени позволяет повысить результативность профессиональной подготовки персонала.
Для подготовки пилотов, диспетчеров УВД перечисленные технологии достаточно широко применяются в учебно-тренировочных средствах (УТС) (симуляторы, процедурные и комплексные тренажеры и т.д.). Для персонала же наземных служб (ЭРТОС, ИАС и др.) подобного рода современные АОС не получили широкого распространения. При этом роль данных служб очень велика, т.к. от качества подготовки ВС на земле (технической (наземной) эксплуатации), а также от качества и надежности радиотехнического обеспечения полетов (РТОП) и авиационной электросвязи в большой степени зависит БП.

Положительный опыт разработки, изготовления и применения АОС накоплен для персонала наземных служб в ракетно-космической отрасли (РКО).

Анализ профессиональной деятельности персонала наземных служб, эксплуатирующих авиационную технику (АТ) (ЭТОС, ИАС), и ракетно-космическую технику (РКТ) (ракетно-космические комплексы (РКК) и наземный автоматизированный комплекс управления космическими аппаратами (НАКУ КА)), показывает высокую степень их сходства. Несмотря на различия в назначении, конструкции, принципах действия пилотируемых, дистанционно пилотируемых, беспилотных ВС и РКТ, можно выделить общие черты процессов их эксплуатации, которые дают основание объединить их в один класс – комплексы авиационной и ракетно-космической техники (АРКТ). Поэтому представляется целесообразным и обоснованным вопрос о возможности переноса опыта, накопленного в РКО, в область ВТ с учетом внесения соответствующих коррективов, учитывающих особенности АТ и ее эксплуатации.

Одним из важных аспектов эксплуатации ВС является возможность наступления различных авиационных событий [13]. Термины и определения, относящиеся к авиационным происшествиям (АП) и инцидентам (АИ), связаны с летной эксплуатацией ВС и практически не распространяются на наземные происшествия (НП), а также деятельность персонала наземных служб. Вместе с тем, одной из причин проявления опасных факторов в полете может явиться именно деятельность наземного персонала. В РКО существует термин «нештатная ситуация» (НшС), который распространяется на этапы и летной, и наземной
эксплуатации. Подходы к рассмотрению ситуаций, выходящих за рамки эксплуатационной документации (ЭД), в ВТ и РКО в значительной степени схожи. Поэтому целесообразно применение термина НшС к деятельности персонала наземных служб эксплуатации АТ.

Под НшС понимается ситуация, при которой состояние объекта деятельности характеризуется любым отклонением от заданной (штатной) программы функционирования и может привести к аварийной ситуации [125]. Современная система профессиональной подготовки персонала в области эксплуатации АРКТ в целом предусматривает рассмотрение НшС и порядка выхода из них. При этом недостаточное внимание уделяется обучению действиям в непредвиденных (не встречавшихся ранее, не описанных в ЭД) НшС.

Современные АРКТ являются высокотехнологическими наукоемкими объектами. Усложнение АРКТ, связанное с развитием информационных технологий, увеличением функциональных возможностей, приводит к постоянному усложнению деятельности эксплуатирующего персонала (особенно лиц, принимающих решения (ЛПР)), значительно повышаются требования к его квалификации, в первую очередь – знаниям, умениям и навыкам принятия и реализации решений по выходу из многочисленных НшС, возникающих в процессе эксплуатации АРКТ.

Следует отметить важную роль этапа наземной (технической) эксплуатации АРКТ, поскольку именно он во многом обеспечивает надежную работу бортовых систем ЛА в процессе летной эксплуатации. Пропущенные на этом этапе дефекты, скрытые отказы, допущенные персоналом ошибки могут стать причиной АП и АИ.

По данным ИКАО ежегодно происходит в среднем 8 крупных авиационных катастроф. Три четверти АП связаны с так называемым «человеческим фактором». Около 40% АП происходит вследствие нарушений со стороны персонала наземных служб. В свою очередь, порядка 50% из них обусловлено недостаточной профессиональной подготовкой [97, 157]. Несмотря на значительные материальные затраты по исследованию «человеческого фактора» и
определенные достигнутые успехи, считать данную проблему решенной на настоящее время нет оснований.

Поэтому руководящие документы в области гражданской авиации определяют задачу совершенствования профессиональной подготовки персонала, как одну из ключевых. Так, задачей Федерального агентства воздушного транспорта (Росавиации) в рамках Государственной программы «Развитие образования» является достижение необходимого количества специалистов в области эксплуатации ВТ с уровнем профессиональной подготовки, отвечающим требованиям безопасности и устойчивости транспортной системы [6, 52].

В научных работах, посвященных исследованию «человеческого фактора», большее внимание уделено анализу деятельности летного состава [23, 57, 66, 67, 68, 94] и значительно в меньшей степени рассмотрены вопросы, связанные с деятельностью эксплуатирующего персонала наземных служб, занимающегося подготовкой и техническим обслуживанием ВС, средств РТП, авиационной электросвязи, аэродромного оборудования и т.д.

Таким образом, налицо проблемная ситуация, связанная как с дефицитом эксплуатационного персонала, так и с недостаточным уровнем его профессиональной подготовки.

Данное обстоятельство требует внесения корректировок в систему профессиональной подготовки персонала, эксплуатирующего АРКТ. Эксплуатация АРКТ в настоящее время рассматривается как вид деятельности, требующий не только строгого выполнения требований ЭД, но и принятия обоснованных решений в НшС, которые не описаны в ЭД.

Одной из основных систем человека, определяющих его поведение в НшС, является когнитивная [113]. Поэтому развитие именно когнитивных компетенций наземного персонала АРКТ при действиях в условиях возникновения непредвиденных НшС является актуальной задачей. Эту задачу предполагается решить с использованием комплексной автоматизированной обучающей системы для профессиональной подготовки персонала АРКТ (КАОС).
Это позволяет сделать вывод об актуальности темы диссертационной работы.

Степень разработанности и методологические основы исследования. В области разработки авиационных тренажеров следует выделить фундаментальные и прикладные работы А.А. Красовского [71], В.А. Боднера [32], Р.А. Закирова [32]; в области разработки стратегий автоматизированного обучения и моделей интеллектуальных компьютерных АОС – труды В.Н. Дозорцева [50], Н.К. Юркова [161], П.Д. Рабиновича [25, 26]; в области инженерной психологии и человеческого фактора – труды П.К. Анохина [20], Н.А. Бернштейна [31], Б.Ф. Ломова [88]; в области математического моделирования процессов обучения и количественной оценки результатов формирования знаний, навыков и компетенций – работы П.П. Чабаненко [150, 151, 152], Д.А. Новикова [96], А.П. Орлова [153]; в области организации воздушного движения, моделирования транспортных процессов – работы Г.А. Крыжановского [72, 73, 74, 75]; в области обеспечения безопасности полетов, оценивания и управления рисками возникновения авиационных происшествий и инцидентов – труды Г.В. Коваленко [66, 67, 68], Э.А. Куклева [41]; в области разработки математических моделей возникновения опасных ситуаций и их развития в происшествия – труды В.И. Ярополова [30], О.В. Краснова [70]. Наименее разработанной остается область исследования, связанная с моделированием ситуаций, которые могут привести к происшествиям, и обоснованием решений по выходу из таких ситуаций.

Объектом исследования в диссертационной работе является обеспечение безопасности полетов.

Предмет исследования – процесс профессиональной подготовки (переподготовки, повышения квалификации) наземного персонала, эксплуатирующего АРКТ, к действиям в НшС с применением АОС.

Цель исследования – повышение обоснованности решений, принимаемых специалистами по наземной эксплуатации АРКТ, при возникновении НшС.
Научная задача, решаемая в диссертации, — на основе анализа профессиональной деятельности и порядка подготовки наземного персонала, эксплуатирующего АРКТ, разработать научно-методический аппарат обучению действиям в НшС на основе КАОС, включающий модели развития НшС, принятия обоснованных решений и методику формирования когнитивных компетенций по выходу из них.

Для достижения цели в работе проведены исследования в следующих направлениях:

1) анализ профессиональной деятельности и подготовки персонала наземных служб эксплуатации АТ и РКТ, сравнительный анализ существующих АОС, используемых при подготовке специалистов по эксплуатации АРКТ и обоснование основных направлений реализации комплексного подхода к разработке АОС;
 2) разработка концепции и структурно-функциональной модели КАОС;
 3) разработка модели возникновения и развития непредвиденной НшС;
 4) разработка модели принятия обоснованных решений по выходу из непредвиденных НшС, возникающих при эксплуатации АРКТ, в условиях неравномерного во времени поступления апостериорной информации;
 5) разработка методики использования КАОС для профессиональной подготовки (переподготовки, повышения квалификации) наземного персонала АРКТ;
 6) проведение экспериментальных исследований по сравнительной оценке влияния КАОС на результативность процесса профессиональной подготовки и уровень обученности наземного персонала АРКТ.

Методы исследования. При выполнении диссертационной работы были использованы методы теории принятия решений, математический аппарат теории игр, теории вероятностей, теории нечетких множеств, вероятностно-статистические методы.
Научная новизна работы состоит в следующем:

1. Разработана новая древовидная модель развития НшС, учитывающая многошаговый процесс принятия решений в ситуационном времени, что позволяет, в отличие от классических моделей принятия решений, учесть возможность появления промежуточной информации и ее использования в ходе управления выходом из НшС.

2. Разработана методика обучения персонала наземных служб эксплуатации АРКТ когнитивным компетенциям по выходу из непредвиденных НшС в условиях неравномерного во времени поступления апостериорной информации, отличительной особенностью которой является учет целевой установки выхода из НшС и связанная с этим более полная оценка возможных последствий НшС при принятии решения.

3. Разработана концепция и реализующая ее структурно-функциональная модель четырехкомпонентной КАОС, включающей в свой состав компоненты обучения, тестирования, поддержки принятия решений в непредвиденных НшС, сопровождения процесса эксплуатации, и позволяющей, во-первых, повысить степень обоснованности решений по выходу из них, во-вторых, сократить время адаптации специалиста на рабочем месте за счет сокращения процесса переноса навыков.

Теоретическая значимость работы обусловлена разработкой моделей подготовки и принятия решений в сложных ситуациях, с учетом необходимости использования не только априорной, но и апостериорной информации, что является вкладом в теорию принятия решений. Кроме того, разработанная методика обучения эксплуатационного персонала когнитивным компетенциям и модель КАОС являются вкладом в теорию обучения.

Практическая значимость работы определяется следующими положениями:

1. Разработан обобщенный подход к созданию КАОС для подготовки персонала по эксплуатации АРКТ, который может быть использован для профессиональной подготовки персонала службы ЭРТОС, ИАС, НАКУ, РКК.
2. Разработана концепция и реализующая ее модель КАОС, которая может быть использована для решения прикладных задач управления персоналом АРКТ: профессиональная подготовка, переподготовка, повышение квалификации, допуск к работе.

3. Разработана и зарегистрирована программа для ЭВМ «Программа комплексного автоматизированного обучения персонала наземных служб, эксплуатирующего авиационную и ракетно-космическую технику».

4. Полученные результаты доведены до инженерных методик, использованных при создании и внедрении более 70 тренажерных моделей в 10 проектах, реализованных на крупнейших отечественных предприятиях промышленности и космодромах, что подтверждается соответствующими актами о внедрении и использовании материалов диссертации.

Обоснованность и достоверность результатов исследования подтверждается:

1. Применением апробированных и признанных научным сообществом методов математического моделирования и анализа эксплуатационных процессов и процессов профессиональной подготовки на основе теории игр, теории случайных процессов, теории нечетких множеств, теории управления.

2. Статистически подтвержденными данными проведенных экспериментов по оценке уровня профессиональной подготовки персонала наземных служб эксплуатации АРКТ в части принятия решений по выходу из НшС с использованием КАОС в сравнении с традиционной методикой обучения.

3. Off-line моделированием возникновения и развития НшС, имевших место при наземной эксплуатации РКТ, в ходе которого были выявлены неверные решения руководителей процесса, а также обоснованы корректные действия на каждом этапе принятия решения по выходу из этих НшС.

Положения, выносимые на защиту:

1. Использование в образовательном процессе четырехкомпонентной КАОС для персонала наземных служб эксплуатации АРКТ, включающей в свой состав модули обучения, тестирования, поддержки принятия решений и сопровождения
реального процесса эксплуатации, позволяет значительно повысить уровень профессиональной подготовки.

2. Модификация древовидной модели развития НшС, учитывая этапы поступления в ситуационном времени апостериорной информации, являющейся следствием принятых на предыдущих этапах решений, позволяет увеличить мощность множества принимаемых во внимание возможных сценариев развития непредвиденных НшС, что увеличивает арсенал возможных вариантов действий для ЛПР.

3. Формирование когнитивных компетенций персонала наземных служб эксплуатации АРКТ по выходу из непредвиденных НшС на основе разработанной модели развития НшС и модели принятия решения, приводит к значимо меньшему количеству ошибок, допускаемых ЛПР, при реализации мероприятий по выходу из НшС.

Публикации. По теме диссертационной работы опубликовано 28 научных статей, в том числе 9 в рецензируемых изданиях, рекомендованных ВАК и 1 свидетельство о государственной регистрации программы для ЭВМ.
Структура и объем диссертации. Диссертация состоит из введения, четырех глав, заключения, списка литературы, 1 приложения. Диссертация изложена на 189 страницах машинописного текста, содержит 13 таблиц и 38 рисунков. Список литературы включает 163 наименований.

В первой главе рассмотрены основные особенности эксплуатации AT и РКТ, выявлены их общие черты и различия. На основе анализа деятельности специалистов по эксплуатации AT и РКТ сделан вывод о значительной схожести процессов их эксплуатации и профессиональной деятельности эксплуатирующего персонала.

Установлено, что одной из основных особенностей эксплуатации АРКТ является частое возникновение НшС, выход из которых обусловливает необходимость принятия решения. Сделан вывод о возможности единого подхода к подготовке специалистов по эксплуатации AT и РКТ. При этом целесообразно использовать опыт использования АОС, накопленный в ракетно-космической отрасли, для подготовки специалистов по наземной эксплуатации AT.

Проведен анализ НшС, возникающих при эксплуатации АРКТ, дана их классификация по скорости развития НшС, степени определенности выхода из НшС, последствиям, степени выполнения целевой задачи. Установлено, что наименее исследованными являются непредвиденные НшС, что предполагает необходимость их учета в процессе подготовки эксплуатирующего персонала.

Проанализированы основные достоинства и недостатки АОС, используемых при подготовке специалистов по эксплуатации АРКТ. Сделан вывод, что одно из основных направлений совершенствования АОС базируется на концепции КАОС, позволяющей не только представить в интегрированном виде материалы, необходимые для учебного процесса, но и обеспечить оперативный доступ обучающимся к требуемой для решения прикладных профессиональных задач информации.

Сформулирована целевая установка исследования, охарактеризованы решаемые в работе задачи, определена их логическая взаимосвязь для достижения цели.
Вторая глава посвящена разработке концепции КАОС, реализующей ее структурно-функциональной модели и научно-методического обеспечения ее использования.

Предложена концепция КАОС, которая позволяет объединить разрозненные решения и сформировать комплексную систему, обеспечивающую решение задач профессиональной подготовки персонала наземных служб эксплуатации АРКТ, а также аттестации персонала, автоматизации рабочих мест и поддержки принятия решений ЛПР при проведении эксплуатационных процессов.

Определены и охарактеризованы задачи КАОС, которые могут быть реализованы в рамках нескольких подсистем:
- электронный интерактивный учебник;
- программный тренажер для выработки индивидуальных практических навыков выполнения операций;
- программный тренажер для выработки практических навыков выполнения операций в составе подразделений;
- подсистема аттестации персонала;
- подсистема поддержки принятия решений при возникновении НшС;
- подсистема информационной поддержки профессиональной деятельности.

Для описания функционала подсистем КАОС разработаны сценарии их использования, в которых приведены функции, обозначены роли пользователей и решаемые ими задачи.

На основе концепции и сценариев разработана структурно-функциональная модель КАОС. В ней объединены подсистемы КАОС, показаны взаимосвязи между ними, модули (реализующие одну или несколько функций), хранилища данных, интерфейсы для взаимодействия с другими КАОС. Одной из основных особенностей разработанной структурно-функциональной модели является модуль моделирования, обеспечивающий функционирование математических моделей оборудования и технологических процессов.

Приведены описания и характеристики подсистем КАОС, разработанных в процессе создания учебно-тренировочных средств (УТС) и средств поддержки
эксплуатации для персонала, эксплуатирующего объекты наземной космической инфраструктуры (НКИ).

На основе анализа основных положений итеративного и трансформационного обучения разработаны предложения по методике обучения персонала АРКТ с использованием КАОС в части действий по выходу из НшС. Разработана модель обучения персонала с применением КАОС, реализующая индивидуальную образовательную траекторию, учитывающую различные факторы образовательного процесса: объем и сложность учебного материала, предлагаемой помощи, уровень способностей обучаемого.

В третьей главе разработана модель развития НшС как последовательность принимаемых решений. Рассматриваемая непредвиденная НшС имеет внешние проявления, а выход из такой ситуации предполагает последовательность принимаемых решений.

Для формирования когнитивных компетенций по принятию решений по выходу из НшС был выбран аппарат теории игр. Процесс возникновения и развития НшС представлен в виде антагонистической игры с двумя участниками.

Проведен анализ возможных стратегий ЛПР по выходу из НшС с учетом различных сценариев ее развития.

Предложен подход к оценке ущерба на основе требований руководящих документов.

Разработана модель оценивания последствий возможных решений по выходу из НшС, а также расчета возможностей реализации различных сценариев развития НшС на основе теории нечетких множеств.

Проведен анализ критериев принятия решений по выходу из НшС, обоснован выбор критерия Гурвица.

Полученные результаты позволили разработать модель принятия решения по выходу из нештатной ситуации.

В четвертой главе на основе разработанных моделей развития НшС и принятия решения по выходу из нее предложена модель обучения и методика
использования КАОС для профессиональной подготовки (переподготовки, повышения квалификации) наземного персонала АРКТ.

Предложены показатели уровня обученности, характеризующие конечный результат обучения и промежуточные результаты подготовки и принятия решения по выходу из НшС.

На основе разработанного научно-методического аппарата в работе приведен пример подробного off-line анализа действий персонала в реальной НшС (Космодром Плесецк, 1972 год), выбранной как наиболее показательной с точки зрения выполняемых учебных задач и задействования всех режимов работы КАОС. Выявлены неверные принимаемые решения, а также обоснованы решения, которые могли бы привести к выполнению задачи, а на поздних этапах развития ситуации – к предотвращению катастрофы.

Приведены результаты экспериментальных исследований проверки эффективности полученных результатов. Для проведения эксперимента были сформированы две учебные группы из числа вновь прибывших специалистов: в первой обучение выполнялось по традиционным методикам, используя только штатную ЭД, во второй – с применением КАОС. Для оценки уровня обученности были использованы обобщенный показатель (средний балл учебной группы) и три частных показателя. Целью эксперимента было подтверждение гипотезы о том, что при использовании КАОС средний уровень обученности будет выше, чем при использовании традиционных методик. Обработка результатов эксперимента проводилась на основе аппарата математической статистики.

Результаты эксперимента подтвердили преимущества КАОС по всем показателям, характеризующим когнитивную составляющую принятия решения.

В заключении обобщены результаты выполненной диссертационной работы и намечены основные направления дальнейших исследований в данной предметной области.
ГЛАВА 1. АНАЛИЗ ПРОФЕССИОНАЛЬНОЙ ДЕЯТЕЛЬНОСТИ И ПОДГОТОВКИ НАЗЕМНОГО ПЕРСОНАЛА В ОБЛАСТИ ЭКСПЛУАТАЦИИ АВИАЦИОННОЙ И РАКЕТНО-КОСМИЧЕСКОЙ ТЕХНИКИ В КОНТЕКСТЕ ОБЕСПЕЧЕНИЯ БЕЗОПАСНОСТИ ПОЛЕТОВ

1.1 Анализ профессиональной деятельности наземного персонала по эксплуатации авиационной и ракетно-космической техники

1.1.1 Особенности эксплуатации авиационной и ракетно-космической техники как сложных технических систем

Имея первоначальную цель облегчения или замещения человеческого труда, технические системы прошли длительный путь развития от элементарных приспособлений до сложных систем с искусственным интеллектом и техногенных конгломератов.

Человечеством созданы и в настоящее время эксплуатируются высокотехнологичные наукоемкие технические объекты во многих сферах деятельности, в том числе в авиационной и ракетно-космической отраслях. К их числу можно отнести аэропорты, космодромы, промышленно-опасные производства, атомные электростанции, комплексные системы вооружения и т.д. Такие объекты принято называть сложными техническими системами (СТС) [154].

СТС свойственны следующие основные характерные особенности (рисунок 1.1):
- иерархическая структура построения, единая цель функционирования, многоэтапность достижения цели эксплуатации и наличие функциональных подсистем;
- множество состояний системы и неопределенность переходов из одного состояния в другое;
- необходимость обеспечения согласованных действий персонала на каждом этапе эксплуатации СТС, т.к. персонал, необходимый для достижения цели эксплуатации СТС (эксплуатирующий, или эксплуатационный персонал), представляет собой множество коллективов, функционирующих во главе с руководителями различных рангов;
- значительные информационные потоки;
- высокая степень опасности для персонала и окружающей среды;
- наличие органов управления подсистемами и СТС в целом, на которых возложены функции управления, планирования, организации, контроля эксплуатации, оценка складывающейся обстановки и принятие решений;
- возникновение нештатных ситуаций и необходимость принятия решений по выходу из них на разных уровнях и др.

Рисунок 1.1 – Примеры СТС и их характерные особенности

Представление СТС в виде иерархической структуры позволяет рассматривать ее как полиэргатическую систему, в которой операторы-
исполнители выполняют заданные функции под руководством оператора-руководителя [87].

Традиционно основное внимание уделялось стадиям разработки и производства СТС, а также вопросам обеспечения высокого качества процессов их функционирования. Исследованиям стадии эксплуатации СТС уделялось значительно меньше внимание в силу того, что деятельность эксплуатирующего персонала, как правило, сводилась к строгому выполнению инструкций по эксплуатации, других руководящих документов, на что и была нацелена его профессиональная подготовка, включая профессиональный отбор, программы и методики обучения.

Усложнение СТС, связанное с увеличением функциональных возможностей, приводит к постоянному усложнению деятельности эксплуатирующего персонала (особенно операторов-руководителей), причем, далеко не всегда алгоритмы действий возможно описать в ЭД, что приводит к необходимости подготовки и принятия решений руководителями в сложных ситуациях. К качеству (обоснованности) таких решений предъявляются высокие требования.

Современные комплексы АТ и РКТ являются яркими представителями СТС. Гражданская авиация наряду с космонавтикой на современном этапе относится к числу наиболее динамично развивающихся отраслей науки и техники. Несмотря на различия в назначении, конструкции, принципах действия пилотируемых, дистанционно пилотируемых, беспилотных воздушных судов с одной стороны, и космических аппаратов, ракет-носителей, разгонных блоков с другой, во-первых, можно их отнести к летательным аппаратам (ЛА), во-вторых, можно выделить общие характерные черты процесса их эксплуатации:

- можно отметить общность истории развития и становления АТ и РКТ;
- для эксплуатации ЛА необходимы сложные средства эксплуатации и разветвленная наземная инфраструктура;
- объектами эксплуатации являются как сами ЛА, так и наземная инфраструктура для их подготовки, применения и обслуживания;
- субъектом эксплуатации является человек;
- жизненные циклы АТ и РКТ и процессы, проводимые на стадии их эксплуатации, весьма схожи;

- эксплуатация ЛА включает две составляющих – наземную и летную (в авиации наземную эксплуатацию называют технической [138]). Этап наземной эксплуатации обеспечивает надежную работу бортовых систем ЛА в процессе летной эксплуатации, а пропущенные дефекты и скрытые отказы, допущенные персоналом ошибки могут стать причиной происшествий;
- ЛА являются малосерийными изделиями, что ограничивает возможности использования статистических методов для оценки их качества;
- ошибки, допускаемые персоналом, в т.ч. неверно принимаемые решения, могут привести к происшествиям с тяжкими последствиями.

Все вышеперечисленное дает основания сделать вывод об общности АТ и РКТ с точки зрения особенностей их эксплуатации. Поэтому в дальнейшем будет использоваться термин «комплексы авиационной и ракетно-космической техники» (АРКТ).

Рассмотрим подробнее ошибки, допускаемые персоналом, и их причины.

Недостаточная обученность персонала нередко приводит к ошибочным действиям, что, в свою очередь, обусловливает низкое качество результатов выполнения эксплуатационных процессов (технологических операций), их несвоевременность и нарушение последовательности.

Следует обратить внимание на то, что уровень аварийности в отечественной государственной авиации остается крайне высоким. При этом в течение последних 30 лет он не снижается и в настоящее время более чем в два раза превышает уровень аварийности в ведущих авиационных державах мира [125].

Авиационные происшествия (АП) существенно затормаживают процесс стабильного развития и функционирования государственной авиации. Негативное воздействие авиационных происшествий ведет к снижению мотивации у граждан России к участию в авиационной деятельности (в т.ч. к летной работе), к снижению боеготовности и боеспособности государственной авиации, а также к
уменьшению экспортного потенциала российской авиационной техники гражданского, военного, двойного и специального назначения.

По оценкам специалистов материальный ущерб, наносимый Российской Федерации авиационными происшествиями в государственной авиации, исчисляется миллиардами рублей. Однако по мере усложнения и удорожания авиационной техники, роста интенсивности ее использования (при сохранении существующей системы безопасности полетов) материальный ущерб от авиационных происшествий без принятия дополнительных упреждающих мер может многократно увеличиться [125].

Основные причины АП приведены в таблице 1.1 [21]. Анализ этих данных показывает, что от 11 до 17 % причин АП связаны с неудовлетворительной работой служб, занимающихся наземной (технической) эксплуатацией.

Таблица 1.1 – Причины авиационных происшествий

<table>
<thead>
<tr>
<th>№</th>
<th>Причина авиационного события</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Нарушения и упущения в организации полетов</td>
<td>16…24</td>
</tr>
<tr>
<td>2</td>
<td>Нарушения и упущения (ошибочные действия) при управлении воздушным движением и руководстве полетами</td>
<td>10…16</td>
</tr>
<tr>
<td>3</td>
<td>Нарушения и ошибочные действия летного состава</td>
<td>40…60</td>
</tr>
<tr>
<td>4</td>
<td>Нарушения и упущения в медицинском, метеорологическом и радиотехническом обеспечении полетов</td>
<td>6…7</td>
</tr>
<tr>
<td>5</td>
<td>Нарушения и упущения в аэродромно-техническом обеспечении полетов</td>
<td>3…6</td>
</tr>
<tr>
<td>6</td>
<td>Нарушения и упущения в инженерно-авиационном обеспечении полетов</td>
<td>8…11</td>
</tr>
</tbody>
</table>

Статистические данные по отказам и неисправностям АТ показывают [21], что в процессе подготовки ВС к полетам, проведении регламентных и других работ выявляются и устраняются 96% отказов и неисправностей, остальные могут проявляться в полете. При этом 97,5% отказов и неисправностей, проявившихся в полете, не имеют последствий и лишь 2,5% приводят к последствиям. Из всего количества отказов и неисправностей АТ по вине персонала инженерно-технических служб (ИТС), приводящих к последствиям, 57% создают угрозу БП,
а 0,5% приводят к АП. Эти данные свидетельствуют, с одной стороны, об эффективности принятой в авиации системы технической эксплуатации, а с другой стороны, вызывают настоятельную необходимость дальнейшего совершенствования деятельности эксплуатирующего персонала по обеспечению БП.

Качество обслуживания ВС и устранения неисправностей зависит от многих причин и определяется рядом таких факторов, как интерес к работе, моральное состояние, дефицит времени, загруженность информацией и т.д. Среди основных причин ошибок человека можно выделить [34]:

- неудовлетворительные процедуры технического обслуживания (ТО) или эксплуатации (не обнаружена неисправность, внесен посторонний предмет, неправильно собран, установлен, отрегулирован или обслуген агрегат, не дозаправлена система, не смазан агрегат, не проверено качество горюче-смазочных материалов и т.д);
- плохие условия работы, связанные, например, с плохой доступностью к оборудованию, теснотой рабочего помещения или чрезмерно высокой (низкой) температурой;
- неудовлетворительное оснащение необходимой аппаратурой и инструментами;
- недостаточное стимулирование специалистов по техническому обслуживанию, не позволяющее достигнуть оптимального уровня качества их работы и пр.

Однако основной причиной ошибок является неудовлетворительная подготовка или низкая квалификация эксплуатирующего персонала АТ [34].

Описанные выше проблемы также свойственны РКТ. За время практической деятельности по освоению космического пространства, включая создание и эксплуатацию РКТ, накоплен достаточно большой опыт решения указанных проблем. Этот опыт целесообразно использовать при эксплуатации АТ с учетом ее особенностей.
Основные проблемные вопросы, возникающие на этапе наземной эксплуатации АРКТ, можно условно разделить на три группы [154].

1. Большое число обнаруживаемых неисправностей бортовых систем и агрегатов при каждом цикле подготовки ЛА к полету, устранение которых часто требует оперативного принятия решений. При этом важно установить не только причины неисправностей, но и влияние выявленных неисправностей на функционирование бортовых систем и агрегатов. Опыт показал, что их целесообразно классифицировать по этому признаку, по крайней мере, на три группы. Первая группа – это неисправности, при которых ЛА не допускается к полету, так как недопустимо высок риск аварии. Во вторую группу входят те неисправности, которые обязательно должны быть устранены перед полетом. В третью группу входят неисправности, которые не приводят к невыполнению целевой задачи, поэтому ЛА можно допускать к полету.

2. Большое количество так называемых нештатных ситуаций. Помимо неисправностей, в процессе предполетной подготовки ЛА возникает достаточно большое количество сбоев и других отклонений результатов выполнения технологических операций от установленных требований. Такие отклонения были названы нештатными ситуациями (НшС). Неопределенность, связанная как с причинами возникновения НшС, различными сценариями их развития, которые могут привести к происшествиям (катастрофам, авариям) и поломкам техники, так и с возможностью принятия неверных решений по выходу из этих ситуаций, обусловливает высокую степень ответственности за принятие решений при проведении процессов наземной эксплуатации. Значительная тяжесть последствий происшествий, к которым могут приводить НшС, обусловливает необходимость поиска методов предотвращения аварий при наземной эксплуатации АРКТ, обоснования мер защиты персонала, окружающей природной среды и сопряженных объектов.

3. Значительное число ошибок эксплуатирующего персонала. Такие ошибки, в свою очередь, можно условно разделить на три группы.
Во-первых, ошибки, связанные с недостаточными знаниями устройства, принципа функционирования АРКТ, а также так называемые нарушения технологической дисциплины, или несоблюдение установленной ЭД технологии выполнения операций.

Во-вторых, нарушения требований безопасности, что часто приводит к НшС.

В-третьих, неверные решения, принимаемые руководителями работ по выходу из НшС.

Во многом эти проблемные вопросы связаны с недостаточной эффективностью функционирования системы поддержки принятия решений (СППР) при эксплуатации АРКТ. Принимаемые решения должны быть обоснованы с учетом всех возможных их последствий и приняты в установленные сроки, как правило, сжатые. Полностью исключить риск принятия неправильного решения невозможно, но свести его к минимуму – это реальная задача. Функционирование СППР должно быть направлено на предоставление ЛПР необходимой информации.

Кроме того, нельзя не отметить существенно снизившийся за последнее время уровень подготовки эксплуатирующего персонала. В современных условиях эксплуатации АРКТ существенно изменяется роль эксплуатирующего персонала, значительно повышаются требования к его квалификации, в первую очередь – знаниям, умениям и навыкам принятия и реализации решений по выходу из многочисленных НшС, возникающих в процессе опытной отработки, ввода в эксплуатацию и эксплуатации АРКТ [154].

Появление НшС в процессе эксплуатации может быть обусловлено следующими причинами:

- технические факторы (отказы бортовых систем ЛА, наземного технологического оборудования и т.д.);

- человеческие факторы (ошибки при разработке и изготовлении ЛА, при отборе персонала (летчиков, космонавтов, сотрудников, обеспечивающих подготовку и управление ЛА на Земле), при комплектовании экипажей, при
управлении полетом ЛА с Земли, ошибочные действия эксплуатирующего персонала (летного и наземного) при выполнении технологических операций и т.д.);
- воздействие неблагоприятных факторов внешней среды [30].
НешС могут приводить к весьма тяжелым последствиям, таким как:
- срыв выполнения задач по предназначению;
- гибель эксплуатирующего персонала;
- аварии и катастрофы, вывод из строя дорогостоящего технологического оборудования и ЛА;
- ухудшение экологической обстановки и т.д.
Знания, умения и навыки действий в НешС являются одним из ключевых факторов профессиональной подготовки специалистов по эксплуатации АРКТ. Необходимым условием этого является понимание ими причин появления и закономерностей развития НешС.

1.1.2 Возникновение нештатных ситуаций как особенность процесса эксплуатации авиационной и ракетно-космической техники. Классификация нештатных ситуаций

Термин «нештатная ситуация» в различных сферах деятельности человека трактуется в соответствии со спецификой объектов эксплуатации. Так, например, в ракетно-космической отрасли НешС рассматривается как состояние РКТ, не предусмотренное программой (алгоритмом) ее штатного функционирования и неопределенное документацией по эксплуатации [118]. В документах МЧС НешС – это сочетание условий и обстоятельств при эксплуатации технических систем, отличных от предусмотренных проектами, нормами, регламентами и ведущих к возникновению опасных состояний в технических системах [162]. В системе охраны труда НешС определяется как ситуация, при которой технологический процесс или состояние оборудования выходит за рамки нормального функционирования и может привести к аварии [133].
Нештатные ситуации классифицируют по различным признакам: по причине и природе возникновения, по скорости развития, по последствиям, по величине затраченных ресурсов, по степени опасности и влияния на жизнь и здоровье персонала, состояние окружающей среды и т.д. [107].

Одним из важнейших классификационных признаков Нештатных ситуаций является степень неопределенности выхода из нее. По этому признаку выделяется два вида Нештатных ситуаций:
- предусмотренная (расчетная) нештатная ситуация – НештС, которая выявлена и исследована в процессе создания АРКТ и внесена в ЭД;
- непредвиденная (нерасчетная) нештатная ситуация – НешС, которая не встречалась в практике эксплуатации и/или не рассматривалась при создании АРКТ [118].

Предусмотренным НешС уделено достаточно большое внимание [138, 30], причем основной упор делается на поиск известного решения (по принципу прецедента). Выход из таких НешС обеспечивается использованием структурного, функционального или временного резерва (резервирование, использование запасных частей, инструмента и принадлежностей (ЗИП), перенос отдельных технологических операций).

По скорости развития НешС подразделяются на: мгновенно развивающиеся (например, взрыв), быстро развивающиеся (например, пожар), медленно развивающиеся. При возникновении первых двух упомянутых видов НешС ЛПР практически не имеет возможности провести анализ и принять решение. Медленно развивающиеся НешС такую возможность предоставляют, и именно они рассматриваются в дальнейшем.

По степени опасности для жизни и здоровья персонала, возможности вывода из строя техники АРКТ или невыполнения задач по предназначению НешС могут быть: безаварийными, опасными, аварийными и катастрофическими. Безаварийные НешС – это ситуации, не создающие прямой угрозы для жизни и здоровья персонала и не приводящие к выводу из строя АРКТ. Как правило, они лишь усложняют условия эксплуатации. Их влияние на персонал характеризуется незначительным повышением его психофизиологической нагрузки. Под
опасными НШС понимаются ситуации, в которых могут проявиться факторы, несущие угрозу жизни и здоровью персонала или угрожающие сохранности АРКТ. Опасные ситуации характеризуются значительным повышением психофизиологической нагрузки персонала и могут перерасти в аварийную или катастрофическую ситуацию. Аварийной называется НШС, при которой имеется непосредственная угроза здоровью или жизни человека (члена экипажа, оператора, номера расчета и др. лиц) [118].

По вероятности возникновения НШС подразделяются на: практически невероятные, крайне маловероятные, маловероятные, умеренно вероятные, повторяющиеся.

По критичности НШС можно разделить на: чрезвычайно критические, весьма критические, критические, малокритические, некритические [107].

По последствиям НШС подразделяются на приводящие или не приводящие к происшествиям.

По степени влияния на выполнение целевой задачи (ВЦЗ) НШС подразделяются на те, которые могут привести к трем различным исходам: полному ВЦЗ, ВЦЗ с ограничениями, невыполнению целевой задачи.

Также НШС классифицируют по таким признакам, как причина и природа возникновения, последствия, величина затраченных ресурсов на выход из НШС, степень влияния на состояние окружающей среды и т.д. Классификация НШС приведена на рисунке 1.2.

Все виды НШС, независимо от классификации, объединены одним общим обстоятельством – необходимостью принятия решения при их возникновении.

В настоящей работе под НШС понимается состояние АРКТ, не предусмотренное алгоритмом их штатного функционирования, не определенное документацией по эксплуатации и требующее принятия обоснованного решения по выходу из нее.

Все принимаемые решения можно разделить на две категории:
- прецедентные решения, связанные с предыдущей эксплуатацией изделия или его аналогов и описанные в ЭД. Такие решения свойствены предусмотренным НшС;

- беспрецедентные решения, которые нужно принимать, исходя только из имеющейся исходной информации, включая предпочтения системы вышестоящего уровня, связанные с важностью ВЦЗ и необходимостью сохранения изделия. Такие решения принимаются в непредвиденных НшС.

Рисунок 1.2 – Классификация нештатных ситуаций

Правильно принятые и реализованные персоналом (ЛПР) решения при возникновении нерасчетных НшС в процессе наземной эксплуатации АРКТ позволяют предотвратить их или существенно снизить ущерб от них. Недостаточный уровень профессиональной подготовки персонала АРКТ, действующего в условиях возникновения НшС, может стать причиной происшествий с тяжкими последствиями.
Поэтому весьма актуальной является задача обеспечения высокого уровня квалификации эксплуатирующего персонала (ЛПР), который позволяет обоснованно принимать решения при возникновении непредвиденных НшС на этапе наземной эксплуатации АРКТ. Для этого проанализируем профессиональную деятельность эксплуатирующего персонала АРКТ

1.1.3 Анализ профессиональной деятельности наземного персонала по эксплуатации авиационной и ракетно-космической техники

Профессиональная деятельность эксплуатирующего персонала АРКТ направлена на подготовку ЛА и наземного технологического оборудования к полету, осуществлению полета и проведения послеполетного обслуживания ЛА. Отметим общность эксплуатационных циклов (ЭЦ) АТ и РКТ - совокупности работ, необходимых для подготовки и осуществления полета ЛА. Так, ЭЦ АТ включает следующие этапы:

а) подготовка наземного технологического оборудования (НТО) к работам с BC;
б) предполетная подготовка BC (ТО, ремонт, и другие регламентированные эксплуатационные процессы);
в) полет BC (взлет, крейсерский полет, посадка);
г) послеполетное обслуживание BC;
д) восстановление и поддержание исправного состояния НТО.

ЭЦ РКТ включает следующие этапы:

а) подготовка НТО технических комплексов (ТК) ракеты-носителя (РН), космического аппарата (КА), разгонного блока (РБ), ракеты космического назначения (РКН), стартового комплекса (СК) и заправочной станции (ЗС) к приему и работе с составными частями (СЧ) РКН;
б) подготовка СЧ РКН и РКН в целом на ТК;
в) подготовка РКН на СК и пуск РКН;
г) вывод КА на целевую орбиту;
д) орбитальный полет КА;
е) спуск и посадка спускаемого аппарата (СА) или многоразового КА (МнКА);
ж) послеполетное обслуживание СА, МнКА;
к) восстановление и поддержание исправного состояния НТО.
Графические модели деятельности персонала по эксплуатации авиационной и ракетно-космической техники представлены на рисунке 1.3.

Рисунок 1.3 – Модели деятельности персонала в эксплуатационных циклах АТ (сверху) и РКТ (снизу)

Выполнение этих работ требует высокой квалификации персонала, обеспечения слаженной работы всех эксплуатационных подразделений, для чего необходимы усилия по различным направлениям, или видам деятельности.
К основным видам деятельности эксплуатирующего персонала АРКТ относятся эксплуатационно-техническая, производственно-технологическая и организационно-управленческая [16, 17, 18].

Эксплуатационно-техническая деятельность связана с решением следующих задач:
- поддержание и сохранение летной годности ВС;
- обеспечение необходимых условий для подтверждения и сохранения летной годности ВС, в т.ч. поддержание исправного состояния комплексов АРКТ;
- надзор и контроль за соблюдением государственных требований по сохранению летной годности и обеспечению безопасности полетов при испытаниях и эксплуатации ВС.

Производственно-технологическая деятельность осуществляется по следующим направлениям:
- проведение комплекса планово-предупредительных работ по обеспечению исправности, работоспособности и готовности АРКТ;
- анализ результатов испытаний и технической эксплуатации АРКТ и разработка рекомендаций по повышению уровня эксплуатационно-технических характеристик эксплуатации АРКТ.

Организационно-управленческая деятельность связана с организацией эксплуатационных процессов и управлением подразделениями по их выполнению, а именно:
- организация и планирование испытаний и использования по назначению АРКТ;
- управление техническим состоянием на этапах испытаний и эксплуатации АРКТ;
- управление информационным, метрологическим и материально-техническим обеспечением процессов испытаний и технической эксплуатации АРКТ;
- управление качеством технического обслуживания и ремонта АРКТ.

Осуществление этих видов деятельности применительно к АТ и РКТ, как показывает анализ, имеет много общих черт. Результаты анализа сведены в таблице 1.2.
Таблица 1.2 – Сравнительный анализ деятельности персонала эксплуатирующего АТ и РКТ

<table>
<thead>
<tr>
<th>Аспекты деятельности персонала</th>
<th>АТ</th>
<th>РКТ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Объекты эксплуатации</td>
<td>Летательные аппараты, объекты наземной инфраструктуры обеспечения полетов</td>
<td>Самолеты, вертолеты, БПЛА, НТО аэродромов и ЭРТОС</td>
</tr>
<tr>
<td>Субъекты эксплуатации</td>
<td>Руководители эксплуатации (ЛПР), исполнители</td>
<td></td>
</tr>
<tr>
<td>Этапы эксплуатации</td>
<td>Транспортирование – хранение – ввод в эксплуатацию – подготовка и поддержание к применению по назначению – применение по назначению – снятие с эксплуатации (списание)</td>
<td></td>
</tr>
<tr>
<td>Техническое обслуживание</td>
<td>Периодическое (Иностранные коммерческие ВС: Transit check, Daily Check, Weekly check, A-check, B-check, C-check и D-check. A-check и B-check – по календарному сроку, по налету; гос.авиация – предварительная и предполетная подготовка, периодические, контрольные и целевые осмотры, сезонное TO, регламентные работы и т.д.); по техническому состоянию</td>
<td>Календарное (по наработке) (контрольный осмотр, ежедневное, еженедельное, ежемесячное, ежеквартальное, полугодовое, годовое и т.д.); по техническому состоянию</td>
</tr>
<tr>
<td>Эксплуатационные процессы</td>
<td>Ремонт (средний и капитальный)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Продление ресурса (срока службы)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Контроль технического состояния</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Поиск и устранение неисправностей</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Доработки (работа по бюллетеням)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Рекламационная работа</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Метрологическое обеспечение</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Эксплуатация опасных производственных объектов</td>
<td></td>
</tr>
<tr>
<td>Эксплуатация объектов энергонаружда</td>
<td>Транспортирование, хранение, физико-химический анализ, заправка ВС (РН, КА, РБ)/слив</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Работы с компонентами топлив</td>
<td>Керосин</td>
<td>Керосин, жидккий кислород, перекись водорода, амил, гептил, жидкый водород и др.</td>
</tr>
<tr>
<td>Обеспечение и соблюдение правил и мер безопасной эксплуатации (ПМБ)</td>
<td>Определение и доведение до персонала опасных производственных факторов, ПМБ, обеспечение безусловного выполнения ПМБ, контроль на всех стадиях выполнения работ, использование средств индивидуальной и коллективной защиты</td>
<td></td>
</tr>
<tr>
<td>Основные типы технологических операций (ТОп) при эксплуатации и испытаниях</td>
<td>ТОп, выполняемые индивидуально или в составе расчетов (бригад, смеш): транспортировочные, механические (прочностные) - кантовочные, вибрационные; электрические – испытания систем управления, связи, электрооборудования, электроприводов, заряд/разряд бортовых батарей; пневмо-вакуумные – проверка герметичности баков и магистралей; заправочные – заправка компонентами топлив и сжатыми газами; контрольно-поверочные – проверка функционирования систем ЛА, контроль параметров; настроенные и т.д.</td>
<td></td>
</tr>
<tr>
<td>Типы наземного технологического оборудования (НТО)</td>
<td>Подъёмно-транспортное, монтажно-стыковочное, контрольно-проверочное, электрическое, пневмо-вакуумное, заправочное, противообледенительное и т.д.</td>
<td></td>
</tr>
<tr>
<td>Организация работ</td>
<td>К работам допускаются лица, получившие установленным порядком допуск к самостоятельной работе. Работы выполняются в индивидуально или в составе расчетов (бригад, смен) по штатной ЭД, по команде руководителя работ (начальника расчета); действует установленная система команд и докладов о выполнении ТОп; особо ответственные и опасные операции выполняются под тройным контролем, результаты испытаний отражаются в бортжурнале и т.д.</td>
<td></td>
</tr>
<tr>
<td>Действия в нештатных ситуациях</td>
<td>Большое количество возникающих предусмотренных (описанных в ЭД) и непредвиденных НшС, необходимость принятия обоснованных решений по выходу из них.</td>
<td></td>
</tr>
<tr>
<td>Подготовка эксплуатирующего персонала</td>
<td>К работам допускаются лица, прошедшие необходимую подготовку, получившие установленным порядком допуск к самостоятельной работе. Осуществляется периодический контроль знаний, подтверждение и повышение квалификации, переподготовка персонала.</td>
<td></td>
</tr>
</tbody>
</table>

Общность профессиональной деятельности специалистов по эксплуатации АТ и РКТ во многом обусловливает общность процесса профессиональной подготовки эксплуатирующего персонала АТ и РКТ.
1.2 Анализ процесса профессиональной подготовки наземного персонала по эксплуатации авиационной и ракетно-космической техники

Снижение общего уровня подготовки выпускников средних школ и существенные изменения в социальной структуре мотивации к освоению будущей профессии затрудняют процесс профессиональной подготовки специалистов в профильных высших учебных заведениях. Недостаток материального обеспечения образовательного процесса во многих вузах приводит к необходимости существенного увеличения периода адаптации молодых специалистов непосредственно в эксплуатирующих организациях [80, 81, 108, 109].

Статистика неумолимо показывает рост числа происшествий и аварий, происходящих по вине человека, практически во всех сферах деятельности. Это относится ко всем промышленно развитым странам. Человеческий фактор является причиной аварий и катастроф в 70-95 % случаях. При этом к числу причин возникновения аварий и катастроф часто относятся не только прямые ошибки персонала, но и общая тенденция пренебрежения установленными правилами и инструкциями, а также правовой нигилизм. Социально-исторические аспекты этого процесса крайне сложны и являются темой отдельного исследования. Судя по всему, такая тенденция будет сохраняться в ближайшие годы [77, 78, 79].

Проблема недостатка квалифицированных кадров в России усугубляется общей демографической обстановкой. По прогнозу Росстата, сокращение численности населения в трудоспособном возрасте к 2025 г. составит 16,2 млн. человек. При этом уровень общей образовательной подготовки непрерывно снижается [148].

Задачи профессиональной подготовки эксплуатирующего персонала АРКТ определяются характером профессиональной деятельности.

Повышение качества профессиональной подготовки специалистов наземных служб АРКТ, сокращение сроков профессиональной адаптации
специалиста на конкретном рабочем месте на сегодняшний день является одним из приоритетных направлений повышения безопасности полетов.

Важнейшая характерная черта сложившейся системы подготовки специалистов по наземной эксплуатации АРКТ – нацеленность на строгое выполнение требований действующих руководящих документов. Это направление подготовки продолжает оставаться ключевым.

Однако следует отметить существенное усложнение деятельности эксплуатирующего персонала АРКТ, связанное не только с усложнением техники, но и с необходимостью принятия решений при эксплуатации АРКТ в ситуациях, которые не могут быть учтены при создании АРКТ и внесены в ЭД. Такие решения должны приниматься на основе анализа не только априорной, но и апостериорной информации, что обусловливает необходимость высокого уровня теоретической и практической подготовки специалистов, в чьи обязанности входит принятие решений (ЛПР).

На обеспечение подготовки специалистов такого уровня направлена разработанная в середине 2000-х гг. специалистами Военно-космической академии имени А.Ф. Можайского В.И. Звягиным, А.И. Птушкиным, В.С. Жигилем, Е.Н. Шаповаловым и другими «Концепция подготовки специалистов по эксплуатации комплексов космических средств», которая была нацелена на подготовку и принятие решения по оценке технического состояния объектов НКИ на основе гибкой стратегии эксплуатации [64, 110].

Подобные решения необходимо принимать и при возникновении НшС.

Сложившаяся в настоящее время система профессиональной подготовки персонала в области эксплуатации АРКТ в целом предусматривает рассмотрение НшС и порядка выхода из них, однако в достаточно ограниченном варианте:

- в качестве НшС в основном рассматриваются неисправности, технология устранения которых известна, и задача сводится только к нахождению известного решения, описанного в ЭД (т.е. выход из НшС ищется по прецедентному принципу);
- основное внимание при выходе из НшС уделяется обоснованию средств защиты и их использованию в различных ситуациях;
- при оценке ущерба от НшС практически не учитываются потери от невыполнения целевой задачи.

При эксплуатации АРКТ часто возникают беспрецедентные (нерасчетные) НшС, что обусловлено их особенностями: уникальностью, сложностью процессов функционирования, высокой степенью опасности, высокой стоимостью и т.д.

При этом формирование компетенций деятельности в беспрецедентных НшС связано с усвоением образа действий, выполнением типовых действий, которые должны быть выполнены обязательно, а их конкретное содержание определяется самой НшС.

Подготовка персонала к действиям в беспрецедентных НшС – это один из основных этапов практической подготовки персонала.

Практическая подготовка базируется на использовании учебно-тренировочных средств (УТС) как в виде отдельных изделий и комплексов, так и технических средств на основе компьютерных технологий, таких как учебные пособия, справочники, руководства, описания, имитаторы, тренажеры и т.д.

Одним из приоритетных направлений развития УТС является разработка тренажеров, максимально имитирующих условия летной эксплуатации ЛА. Такие тренажеры широко применяются для подготовки летчиков, космонавтов, специалистов по управлению воздушным движением, диспетчеров [29, 30, 71, 144, 160, 161]. Для подготовки специалистов по наземной эксплуатации АРКТ таких тренажеров практически нет.

В современных условиях центр внимания в профессиональной подготовке переместился из области предметных знаний в область освоения методов самостоятельного получения новых знаний в любой сфере человеческих знаний. Эта тенденция обусловливается тем, что усиление когнитивных и информационных аспектов в современном производстве выходит за рамки традиционных понятий профессиональной квалификации. На этом во многом
базируется компетентностный подход, нашедший свое отражение в федеральных государственных образовательных стандартах высшего профессионального образования 3-го поколения (ФГОС-3) [77, 108].

Формирование когнитивной компетенции, связанной с подготовкой и принятием решений по выходу из непредвиденной НшС представляет собой сложную комплексную задачу, для решения которой может понадобиться самая разнообразная информация, к которой должен быть обеспечен оперативный доступ. Один из наиболее рациональных способов ее решения связан с разработкой комплексной автоматизированной системы, которая включала бы в свой состав подсистемы подготовки, аттестации и сопровождения профессиональной деятельности соответствующих специалистов наземных служб, и ее последующим внедрением в систему эксплуатации АРКТ. Такая комплексная система позволит решать не только задачи подготовки специалистов в образовательных учреждениях, но и может быть использована в эксплуатирующих организациях для решения задач поддержания и контроля требуемого уровня профессиональной подготовки.

Концепция создания комплексной автоматизированной системы подготовки, аттестации и сопровождения профессиональной деятельности рассматривается автором в качестве перспективного направления для решения реальных задач подготовки персонала, эксплуатирующего АРКТ [80, 81, 84], чему посвящена 2 глава диссертации.

В завершение отметим еще одно обстоятельство. При организации образовательного процесса профессиональной подготовки важно его выстроить так, чтобы выработка требуемых знаний, умений, навыков и компетенций проводилась по каждой из трех основных систем каждого обучающегося (перцептивной, когнитивной и моторной) с обязательным последующим объединением в профессиональный навык комплексной деятельности. Также подготовка персонала должна быть направлена на развитие его способности сохранять надежное функционирование в условиях повышенной психофизиологической нагрузки для устранения негативных явлений, таких как
паника или ступор, возникающих в НшС. Такой подход является отдельным перспективным направлением исследований в области АОС, которые нашли широкое применение в педагогической практике.

1.3 Анализ существующих автоматизированных обучающих систем, используемых при подготовке специалистов по эксплуатации авиационной и ракетно-космической техники

Качество профессиональной подготовки персонала АРКТ в существенной степени зависит от наличия современных учебно-тренировочных средств. На сегодняшний день в различных отраслях используются натурные тренажеры, в той или иной степени, воспроизводящие реальные объекты эксплуатации. Так, например, широко известны тренажеры для летчиков, космонавтов, водителей автомобилей и т.д. Для крупных уникальных и малосерийных технических объектов (сложных технических систем) использование натурных тренажеров, как правило, затруднено в силу их высокой стоимости. С развитием информационных технологий появились принципиально новые возможности по подготовке персонала, эксплуатирующего СТС, связанные с созданием автоматизированных обучающих систем. Одним из основных преимуществ АОС является использование виртуальных объектов вместо дорогостоящих натурных образцов СТС, возможность моделирования различных ситуаций, которые трудно или невозможно воспроизвести в реальной действительности.

Различным аспектам разработки, создания, развития АОС, а также обучения персонала с их использованием посвящено достаточно большое количество публикаций, среди которых можно выделить работы Д.А. Поспелова [119], Г.С. Осипова [106], Р. Аткисона [22] – в области проблем использования и развития технологий представления и управления передачей знаний; П.П. Чабаненко [150, 151], Д.А. Новикова [96], П.А. Орлова [153], В.Л. Гаврикова [39], Р.Г. Хлебопроса [39] – в области математического моделирования процессов научения и количественной оценки результатов формирования знаний, умений,
навыков и компетенций; В.Н. Дозорцева [50], Н.К. Юркова [161], А.В. Демьянова [44, 45, 46], А.В. Затылкина [58], И.А. Башмакова [25, 26], П.Д. Рабиновича [25, 26] – в области разработки стратегий автоматизированного обучения, моделей интеллектуальных компьютерных обучающих систем; Г.А. Крыжановского [72, 73, 74, 75], П.Н. Берлада [151], А.Г. Ашерова [19] – в области разработки моделей систем; Е.А. Куклева [41, 86] – в области системного математического моделирования в гражданской авиации.

Сейчас уже можно с полной уверенностью утверждать, что развитие информационных технологий создало необходимую основу для превращения АОС из информационного приложения традиционных методик преподавания в новый класс систем, радикально меняющих технологию подготовки современных специалистов [161].

В настоящее время существует множество АОС по самым различным предметным областям. Несмотря на то, что в настоящее время не существует единой терминологической базы АОС, среди них можно выделить следующие классы [161].

Мультимедийные энциклопедии, справочники, словари

Основными достоинствами указанных объектов являются: широкое использование мультимедийных форматов предоставления информации (графические, фото-, видео- и аудиоформаты), быстрота поиска требуемой информации (использование технологии гиперссылок). К недостаткам следует отнести отсутствие в них функции контроля и тренировки.
Компьютерные системы тестирования (КСТ)

КСТ в отличие от мультимедийных энциклопедий создаются для определения уровня знаний пользователя. Их возможности колеблются от простейших (позволяющих проводить тестирование, сохранять его результаты, а затем предоставлять их по требованию) до достаточно сложных (статистическая обработка результатов, оформление отчетов по различным критериям, установки параметров вопросов (например, коэффициент сложности), параметров тестов (например, ограничение времени тестирования), разграничение прав доступа и т.д.).

Основным достоинством КСТ является быстрое выявление и оценка знаний тестируемого. К недостаткам следует отнести отсутствие возможности пояснения неверных ответов и последующего программного обучения с учетом текущего уровня знаний обучающегося, т.е. отсутствие адаптивной обучающей функции.

Компьютерные обучающие средства (КОС)

КОС, или E-Learning (Electronic Learning – система электронного обучения), – это средства, обладающие достоинствами мультимедийных энциклопедий и КСТ.

Некоторые из них обладают адаптивностью, например, позволяют осуществлять связь тестовых вопросов с теоретическими темами: при неправильном ответе на вопрос обучающийся может получить объяснение, в чем состоит его ошибка, или вернуться к изучению связанного теоретического материала, что позволяет повысить эффективность процесса обучения [161].

КОС – это обучающая программа (ОП), выполняющая в диалоговом режиме обучения по некоторой дисциплине или по одному из ее разделов. ОП предлагает обучающемуся порции учебного материала и контрольные задания по ним в той последовательности, которую требует методика обучения, определяет последовательность выполнения контрольных заданий и указывает на характер допущенных ошибок. В зависимости от достигнутых результатов ОП выбирает дальнейшую последовательность прохождения курса в удобном для обучающегося темпе подачи материала [140, 54].
Основные достоинства этого класса систем:
- широкое применение средств мультимедиа, компьютерной визуализации учебного материала [140];
- проведение адаптивного обучения;
- быстрое выявление и оценка уровня знаний обучаемого;
- интеграция различных видов коммерческих приложений с КОС;
- возможность проведения дистанционного обучения;
- формирование разнообразной электронной отчетности.

К недостаткам рассмотренного класса систем следует отнести:
- отсутствие тренинга, т.е. возможности получения навыков практических действий в реальных условиях или максимально приближенных к реальным [161];
- большая трудоемкость разработки;
- необходимость строгого следования сценарию;
- для контроля усвояемости учебного материала в большинстве ОП лежит не смысловой, а синтаксический анализ ответов;
- использование закрытой информации при разработке ОП накладывает жесткие ограничения на условия их применения [140].

Тренажерные комплексы

Тренажерные комплексы предназначены для получения обучающимися навыков практических действий.

Тренировка операторов СТС, пилотов, диспетчеров УВД, космонавтов на реальных объектах и в реальных условиях слишком дорога, а часто и невозможна. Альтернативой этому является создание имитационно-тренажерных комплексов (процедурных и комплексных тренажеров), которые в максимально возможной степени приближены к реальному оборудованию и позволяют тренирующимся приобрести правильные и устойчивые навыки и умения.

Рабочее место обычно представляет собой копию реального пульта управления и содержит ручки управления, приборы, шкалы и т.д. (или имитирует его на компьютере, в качестве органов управления выступают «мышь» или «джойстик»). Моделирующий комплекс включает математическую модель
процесса и управляет реакцией системы на действия оператора.

Достоинством тренажерных комплексов является возможность получения навыков практических действий в реальных условиях или в максимально приближенных к реальным. К недостаткам следует отнести то, что в данных АОС отсутствует предоставление теоретических знаний, следовательно, невозможно организовать процесс обучения только с помощью этих систем [161].

Компьютерные системы обучения и тренажа (КСОТ)

В современных условиях очень важна возможность объединения различных этапов подготовки специалистов (от изучения устройства, конструкции до привития умений и навыков выполнения технологических операций и эксплуатационных процессов) в одной АОС. Для решения данной задачи используются КСОТ [140, 141].

КСОТ обеспечивает проведение занятий под руководством преподавателя (режим теоретического обучения), а также проведение одиночной и групповой тренажерной подготовки.

К функциональным подсистемам КСОТ относятся подсистема обучающего, реализованная как пост руководства обучением в составе автоматизированного рабочего места (АРМ) руководителя обучения, системы отображения информации коллективного пользования, документирования и вычислительно-моделирующего комплекса, а также подсистема обучающихся, представленная рядом АРМ обучающихся (АРМО) [140, 49].

АРМО представляет собой рабочую станцию в виде компьютера с двумя-трema мониторами (в т.ч. сенсорно-чувствительными), размещёнными в едином конструктиве, и снабжёнными гарнитурой для обеспечения использования аудиосредств. Функционально АРМО имеет двойное назначение: для обеспечения режима теоретической подготовки и режима тренажерной подготовки [140].

Интерактивные электронные технические руководства (ИЭТР)

В последние годы существенно ужесточились требования заказчиков к уровню послепродажного сопровождения продукции (СТС) различного назначения из-за проблем, связанных с информацией, необходимой для
обеспечения ее эксплуатации, в т.ч. ТО и ремонта, материально-технического обеспечения, подготовки персонала и т.д.

Эффективным решением стала подготовка данной информации в виде интерактивных электронных технических руководств (ИЭТР), состав, структура и форматы представления которых должны отвечать требованиям международного стандарта (спецификации ASD S1000D).

В ИЭТР отражается исчерпывающая информация об изделиях: структура, принципы работы, ТО и ремонт, порядок устранения типовых неисправностей, состав ЗИП, инструкции операторам и т.д.

ИЭТР (особый вид ЭД на изделие) представляет собой структурированный комплекс взаимосвязанных технических данных, предназначенный для предоставления в интерактивном режиме справочной и описательной информации об эксплуатационных и ремонтных процедурах, связанных с конкретным изделием. Оно включает в себя базу данных (БД) и электронную систему отображения, предназначенную для визуализации данных и обеспечения интерактивного взаимодействия с пользователем [140, 8].

Разработанные авиационные тренажеры обладают рядом достоинств, которые позволяют достигать их высоких эксплуатационных характеристик:

- возможность проведения всех видов тренажерной подготовки;
- высокая точность имитации реальных условий полета и работы систем ВС;
- полное соответствие облика тренажера конкретному ВС заказчика;
- применение точных математических моделей, созданных на основе данных, полученных от разработчиков ВС;
- открытая модульная архитектура тренажера;
- система визуализации с высоким уровнем детализации и отображения закабинного пространства;
- широкие возможности моделирования ситуаций, соответствующих требованиям заказчика;
- низкие эксплуатационные расходы;
- оперативная послепродажная поддержка.

АОС для персонала наземных служб, эксплуатирующих АТ, до настоящего времени разработаны и применяются в значительно меньшей степени. В этой связи следует отметить положительный опыт создания АОС для подготовки специалистов по эксплуатации РКТ (систем и агрегатов ТК и СК, заправочно-нейтрализационных станций (ЗНС) космодромов Байконур и Плесецк).

Таблица 1.3 – Обеспеченность АОС персонала объектов НКИ по группам наземного оборудования в ракетно-космической отрасли

<table>
<thead>
<tr>
<th>Основные группы оборудования объектов НКИ</th>
<th>Степень обеспеченности</th>
<th>Примечания</th>
</tr>
</thead>
<tbody>
<tr>
<td>Технические комплексы подготовки СЧ РКН (РН, КА, РБ, КГЧ, РКН):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Монтажно-технологическое оборудование</td>
<td>Есть</td>
<td>«Союз-2», «Протон-М»</td>
</tr>
<tr>
<td>Оборудование СУ, ТМИ и СНЭСТ</td>
<td>Есть</td>
<td>«Союз-2»</td>
</tr>
<tr>
<td>Оборудование газоснабжения и пневмовакуумных испытаний</td>
<td>Есть</td>
<td>«Союз-2»</td>
</tr>
<tr>
<td>Технические системы ТК</td>
<td>Частично</td>
<td>«Союз-2», «Протон-М»</td>
</tr>
<tr>
<td>Стартовые комплексы РКН:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Заправочное оборудование</td>
<td>Есть</td>
<td>«Союз-2», «Протон-М»</td>
</tr>
<tr>
<td>Оборудование газоснабжения</td>
<td>Есть</td>
<td>«Союз-2», «Протон-М»</td>
</tr>
<tr>
<td>Оборудование СУ, ТМИ и СНЭСТ</td>
<td>Есть</td>
<td>«Союз-2»</td>
</tr>
<tr>
<td>Технические системы СК</td>
<td>Частично</td>
<td>«Союз-2», «Протон-М»</td>
</tr>
<tr>
<td>Заправочные станции КА и РБ:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Заправочное оборудование, оборудование нейтрализации КРТ</td>
<td>Частично</td>
<td>Плесецк</td>
</tr>
<tr>
<td>Оборудование газоснабжения и пневмовакуумных испытаний</td>
<td>Частично</td>
<td>Плесецк</td>
</tr>
</tbody>
</table>

В настоящее время в МО РФ и Роскосмосе проводятся работы по созданию АОС для профессиональной подготовки специалистов по эксплуатации: измерительных комплексов космодромов (ИКК), НАКУ КА - оборудования траекторных и телеметрических измерений, комплексов оптических средств, антенных комплексов, командных радиолиний, систем сбора, обработки и анализа измерительной информации; систем обеспечения жизнедеятельности – электроснабжение, тепло-, водоснабжение, кондиционирование; специальных систем – оборудования связи и передачи данных, телевидения, метеообеспечения, физико-химических лабораторий, азотно-кислородных заводов и др. Во многом аналогичное оборудование эксплуатируется в области военной техники, поэтому
видится целесообразным применение накопленного опыта и задела ракетно-космической отрасли для воздушного транспорта с учетом особенностей АТ.

На основе проведенного анализа можно сделать следующие выводы:

- существующие АОС предоставляют широкие возможности и позволяют в целом решать задачи профессиональной подготовки эксплуатирующего персонала АРКТ (в основном летного состава, космонавтов и диспетчеров управления воздушным движением);

- АОС для персонала наземных служб АРКТ разработаны недостаточно;

- существующие АОС ориентированы на обучение штатным режимам функционирования ЛА, порядок действий (принятия обоснованных решений) при возникновении непредвиденных (как наиболее части встречающихся на практике) НшС по выходу из них практически не рассматривается;

- отдельные компоненты АОС разрознены, что не позволяет решать комплексные эксплуатационные задачи АРКТ, к которым относится и подготовка решений по выходу из непредвиденных НшС;

- АОС не интегрированы с СППР и системами поддержки повседневной профессиональной деятельности ЛПР.

Устранение указанных недостатков позволит расширить функциональные возможности АОС.

Эту задачу целесообразно решать путем создания комплексной автоматизированной обучающей системы, которая бы позволяла в рамках автоматизированного рабочего места объединить в себе функции передачи персоналу необходимых знаний по конструкции и принципам функционирования объектов АРКТ, выполнения типовых технологических операций и эксплуатационных процессов, выработки умений и навыков индивидуальных и коллективных действий в штатных и нештатных режимах функционирования АРКТ, принятия обоснованных решений при возникновении НшС (в т.ч. непредвиденных), тестирования, информационной поддержки повседневной профессиональной деятельности.

На это и нацелена диссертационная работа.
Как показывает анализ, работы в области компьютерных средств учебного назначения имеют прикладной характер и нацелены в основном на создание узкоспециализированных обучающих программ, являющихся электронными аналогами или элементами технических средств обучения существующих учебных курсов.

КАОС должна обладать следующими свойствами:
- объединенными процессами обучения и тренинга, что позволит осуществить комплексный подход к организации процесса обучения;
- обоснованной методологией обучения, позволяющей эффективно передавать профессиональные знания, формировать навыки, умения, компетенции;
- открытой архитектурой, что позволяет расширять, модернизировать и масштабировать ее по мере необходимости [161].

1.4 Постановка задачи исследования

Целевая установка диссертационной работы состоит в разработке научно-методического аппарата формирования когнитивных компетенций по выходу из непредвиденных НшС с КАОС.

Для достижения цели необходимо решить следующие задачи:
1) провести анализ профессиональной деятельности и подготовки персонала наземных служб эксплуатации AT и РКТ, сравнительный анализ существующих АОС, используемых при подготовке специалистов по эксплуатации АРКТ и обоснование основных направлений реализации комплексного подхода к разработке АОС;
2) разработать концепцию и структурно-функциональную модель КАОС;
3) разработать модели возникновения и развития непредвиденной НшC;
4) разработать модель принятия обоснованных решений по выходу из непредвиденных НшC, возникающих при эксплуатации АРКТ, в условиях неравномерного во времени поступления апостериорной информации;
5) разработать методику использования КАОС для профессиональной подготовки (переподготовки, повышения квалификации) наземного персонала АРКТ;

6) провести экспериментальные исследования по сравнительной оценке влияния КАОС на результативность процесса профессиональной подготовки и уровень обученности наземного персонала АРКТ.

Выводы по главе 1

1. Рассмотрены основные особенности эксплуатации авиационных комплексов и комплексов ракетно-космической техники, выявлены их общие черты и различия. На основе анализа видов деятельности специалистов по эксплуатации АТ и РКТ сделан вывод о значительной схожести процессов эксплуатации АТ и РКТ и, соответственно, профессиональной деятельности эксплуатирующего персонала.

2. Установлено, что одной из основных особенностей эксплуатации АРКТ является частое возникновение НшС, выход из которых обусловливает необходимость подготовки и принятия решения по выходу из них.

3. Проведен анализ НшС, возникающих при эксплуатации АРКТ, дана их классификация. Установлено, что наименее исследованными являются действия персонала в нерасчетных НшС, что предполагает необходимость их учета в процессе подготовки эксплуатирующего персонала АРКТ.

4. На основе анализа сложившейся системы подготовки эксплуатирующего персонала АРКТ определены основные тенденции повышения ее качества. Сделан вывод о том, что в современных условиях одним из ключевых элементов профессиональной подготовки является широкое использование автоматизированных обучающих систем, позволяющих заменять реальные объекты виртуальными. При этом целесообразно использовать опыт использования АОС, накопленный в ракетно-космической отрасли, для подготовки специалистов по наземной эксплуатации АТ.
5. Проанализированы основные достоинства и недостатки АОС, используемых при подготовке специалистов по эксплуатации АРКТ. Сделан вывод, что одно из основных направлений совершенствования АОС базируется на концепции КАОС, позволяющей не только представить в интегрированном виде материалы, необходимые для учебного процесса, но и обеспечить оперативный доступ обучающимся к требуемой для решения прикладных профессиональных задач информации.

6. Сформулированы целевая установка исследования, охарактеризованы решаемые в работе задачи, определена их логическая взаимосвязь для достижения цели.
ГЛАВА 2. РАЗРАБОТКА КОНЦЕПЦИИ И СТРУКТУРНО-ФУНКЦИОНАЛЬНОЙ МОДЕЛИ КОМПЛЕКСНОЙ АВТОМАТИЗИРОВАННОЙ ОБУЧАЮЩЕЙ СИСТЕМЫ ДЛЯ ПРОФЕССИОНАЛЬНОЙ ПОДГОТОВКИ ПЕРСОНАЛА ПО ЭКСПЛУАТАЦИИ АРКТ И МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ЕЕ ИСПОЛЬЗОВАНИЯ

2.1 Концепция комплексной автоматизированной обучающей системы для профессиональной подготовки персонала АРКТ

Для решения задач подготовки, аттестации и информационной поддержки персонала АРКТ целесообразно использовать комплексную автоматизированную обучающую систему для профессиональной подготовки персонала АРКТ (КАОС). Данная система должна обеспечивать не только профессиональную подготовку специалистов, но и аттестацию персонала (допуск к самостоятельной работе), автоматизацию рабочих мест специалистов по эксплуатации и поддержку принятия решений. Процесс принятия решений как правило требует использования информационных ресурсов, находящихся в различных источниках, не связанных между собой функционально, что усложняет доступ к данным ресурсам в рамках одного АРМ и, соответственно, усложняет решение вышеперечисленных задач. Выход из сложившейся ситуации возможен на основе концепции формирования КАОС, суть которой состоит в следующем [80]:

- объединение в рамках одной комплексной автоматизированной системы на основе разрозненных решений всех основных аспектов эксплуатационной деятельности: автоматизации рабочих мест, повседневной профессиональной (эксплуатационной) деятельности и поддержки принятия решений ЛПР, профессиональной подготовки и аттестации персонала наземных служб АРКТ;

- обеспечение быстрого доступа ко всем компонентам и информационным ресурсам системы;
- наполнение конкретным контентом в зависимости от предметной области и особенностей профессиональной деятельности специалистов;
- адаптация системы под конкретную организационно-штатную структуру предприятия с учетом производственных связей (иерархию ЛПР).

На основе данной концепции разработана структурно-функциональная модель КАОС.

2.2 Структурно-функциональная модель комплексной автоматизированной обучающей системы для профессиональной подготовки персонала АРКТ

2.2.1 Назначение и задачи комплексной автоматизированной обучающей системы для профессиональной подготовки персонала АРКТ

КАОС предназначена для профессиональной подготовки персонала (в т.ч. руководителей – ЛПР) наземных служб авиационной и ракетно-космической отрасли (специалистов, осуществляющих этап наземной (технической) эксплуатации ЛА, эксплуатирующих объекты наземной авиационной и космической инфраструктуры). Характерной чертой КАОС является наличие взаимосвязанных логических блоков, которые могут быть условно разбиты на две группы: 1) блоки, отражающие реализацию учебных задач, 2) блоки решения задач управления образовательным процессом. Причем, к каждому блоку можно обращаться автономно в соответствии с правами доступа пользователей.

Задачами КАОС являются:
- формирование (восстановление, поддержание на требуемом уровне) профессиональных знаний по конструкции, назначению, принципу функционирования, технологии эксплуатации АРКТ и их элементов;
- выработка практических умений и навыков по выполнению операций технологических процессов (ТП) индивидуально, а также в составе расчета (бригады);
- формирование навыков и компетенций принятия обоснованных решений при выполнении операций ТП в условиях возникновения предусмотренных и непредвиденных НшС;
- аттестация персонала АРКТ;
- информационная поддержка при выполнении задач повседневной профессиональной (эксплуатационной) деятельности.

2.2.2 Состав комплексной автоматизированной обучающей системы для профессиональной подготовки персонала АРКТ и сценарии использования ее подсистем

Задачи КАОС могут быть логичным образом реализованы в рамках нескольких подсистем:

- электронный интерактивный учебник;
- программный тренажер для выработки индивидуальных практических навыков выполнения операций технологических процессов (ТП) (далее – индивидуальный тренажер);
- программный тренажер для выработки практических навыков выполнения операций ТП в составе подразделений (расчетов, бригад) (далее – коллективный тренажер);
- подсистема аттестации персонала;
- подсистема поддержки принятия решений при возникновении НшС;
- подсистема информационной поддержки профессиональной деятельности.

Электронный интерактивный учебник (ЭИУ) предназначен для обучения персонала АРКТ учебного материала (текста технических описаний изучаемого оборудования, его интерактивных 2D- и 3D-моделей, принципиальных электрических, пневмо- и гидросхем оборудования, анимации, фото- и видеоизображений, звукового сопровождения и т.д.) для изучения конструкции, принципа функционирования АРКТ и его составных частей, порядка и правил выполнения операций по использованию изделия по назначению, технического
обслуживания, других эксплуатационных процессов с учетом требований безопасности.

ЭИУ реализует следующие функции:
- представление персоналу устройства АРКТ, его элементов и технологии выполнения эксплуатационных процессов посредством отображения информации в текстово-графическом виде;
- текстово-графическое отображение операций по подготовке и применению по назначению АРКТ и его элементов;
- звуковое текстовое сопровождение обучения;
- предоставление основных сведений об обучаемых;
- выбор и редактирование профиля обучения;
- формирование групп обучаемых;
- контроль усвоения изучаемого материала путем формирования вопросов в режимах самоконтроля и контрольного опроса;
- формирование оценки обучаемому по четырехбалльной шкале;
- вывод результатов тестирования обучаемых на регистрирующее устройство и архивация результатов обучения;
- защита результатов тестирования от несанкционированного вмешательства обучаемых.
- возможность смены пароля для руководителя обучения.

Сценарий использования ЭИУ в виде UML-диаграммы приведён на рисунке 2.1.

Индивидуальный тренажер (ИТ) предназначен для формирования, совершенствования, восстановления и поддержания на требуемом уровне у обучаемых практических умений и навыков индивидуальной операторской деятельности по выполнению технологических операций в штатных (определенных ЭД) условиях эксплуатации АРКТ, а также при возникновении НшС.
Рисунок 2.1 – Сценарий использования ЭИУ

Индивидуальный тренажер реализует следующие функции:
- моделирование функций АРКТ и внешней обстановки во всем диапазоне изменения ее характеристик, во всех режимах и условиях применения;
- моделирование перемещений органов управления, обеспечение пространственного и временного соответствия имитируемых и реальных визуальных объектов и процессов АРКТ;
- воспроизведение учебной информации в реальном и регулируемом (замедленном или ускоренном) масштабах времени;
- автоматическая демонстрация (показ) эталонного выполнения задания;
- усложнение условий выполнения задания по мере приобретения навыков обучаемым;
- остановка тренировки по команде инструктора;
- отработка обучаемым не только всей задачи, но и отдельных ее элементов (при необходимости);
- выдача обучаемому подсказок о необходимых действиях или подробных разъяснений в зависимости от вида ошибки и этапа подготовки;
- звуковое сопровождение тренинга (речевое сопровождение выполняемых технологических операций, команды, доклады и т.д.);
- отработка заданий в режиме самообучения, т. е. без привлечения инструктора и без ограничения числа попыток с правом выбора темпа, последовательности отработки, уровня сложности задания;
- многократное изучение без привлечения инструктора процесса эталонного выполнения задания;
- защита рабочих программ от сбоев, вызванных ошибочными действиями обучаемых;
- воспроизведение инструктажа обучаемым о порядке и правилах пользования тренажером и выполнении учебных заданий;

Сценарий использования ИТ в виде UML-диаграммы приведён на рисунке 2.2.

Коллективный тренажер (КТ) предназначен для формирования, совершенствования, восстановления и поддержания на требуемом уровне у обучаемых практических умений и навыков коллективного выполнения технологических операций в составе расчетов (бригад) в штатных (определенных ЭД) условиях эксплуатации АРКТ, а также при возникновении НшС.

КТ реализует функции, аналогичные ИТ, а также выполняет синхронизацию работы нескольких операторов в рамках одного имитируемого технологического процесса.
Подсистема аттестации персонала (ПАП) предназначена для проведения аттестации персонала АРКТ по результатам обучения.

ПАП реализует следующие функции:

- ознакомление с критериями оценивания качества деятельности, уровня навыков и умений, с текущим уровнем подготовки и с прогнозируемой датой окончания подготовки;

- сравнение своих результатов обучения с результатами других обучаемых.

- контроль параметров, характеризующих качество работы обучаемого, их сравнение с нормативными по критериям, соответствующими данному этапу обучения и условиям тренировки, выбираемым инструктором;

- накопление информации о тенденциях развития знаний, умений и навыков;

- выдача инструктору и обучаемому информации о качестве деятельности обучаемого, тенденциях развития навыка и о его ошибках;

- объективная оценка слаженности как внутри расчета, так и слаженности взаимодействующих расчетов;
- документирование основных событий, действий обучаемых, ответов и других данных для последующего хранения и послетренировочного воспроизведения в реальном, замедленном или ускоренном масштабе времени для оценки хода тренировки (при необходимости);
- регистрация обучаемых, учет посещаемости и успеваемости планирование занятий;
- выдача обучаемым программ обучения и предписаний на дополнительное изучение материала;
- составление сводок и отчетов по результатам обучения.
Сценарий использования ПАП в виде UML-диаграммы приведён на рисунке 2.3.

Подсистема поддержки принятия решений при возникновении НшС (ППР) предназначена для формирования у персонала АРКТ навыков и компетенций принятия обоснованных решений при выполнении операций ТП в условиях возникновения расчетных и нерасчетных НшС, а также информационной поддержки принятия решений при возникновении НшС в повседневной деятельности по эксплуатации АРКТ.

ППР реализует следующие функции:
- сбор, накопление и систематизация информации по НшС, имевшим место в процессе эксплуатации АРКТ, а также описанным в ЭД (предусмотренные НшС) и порядку выхода из них;
- предоставление информации по порядку выхода из аварийных ситуаций: перечень первоочередных мероприятий, список должностных лиц для оповещения, наиболее вероятные сценарии развития, вероятные зоны действия поражающих факторов, пути эвакуации личного состава и техники, места расположения аварийно-спасательных формирований и их оснащенность и т.д.;
- оценка возможностей неблагоприятных исходов при принятии решений по выходу из непредвиденных НшС;
- предоставление информации для выбора критерия решения по выходу из НшС.
Сценарий использования ППР в виде UML-диаграммы приведён на рисунке 2.4.
Подсистема информационной поддержки профессиональной деятельности (ППД) предназначена для автоматизации процессов сбора и представления оперативной информации о техническом состоянии оборудования АРКТ, планирования эксплуатационных процессов и контроля их выполнения.

ППД реализует следующие функции:

- планирование и автоматизированный контроль выполнения эксплуатационных процессов (техническое обслуживание, ремонт, доработки, освидетельствование надзорными органами, рекламационная работа и т.д.) на всех этапах эксплуатации АРКТ (ввод в эксплуатацию, приведение и поддержание в готовности, применение по назначению, утилизация);

- сбор, систематизация и представление повседневной оперативной информации о техническом состоянии оборудования АРКТ и прогнозировании его изменения, неисправностях и поломках оборудования и ходе восстановления
его работоспособности, обеспеченности эксплуатационных процессов материально-техническими средствами, ЗИП и т.д.;

- ведение в электронном виде необходимой эксплуатационной и отчетной документации;

- предоставление в электронном виде эксплуатационной, конструкторской, нормативно-технической и справочной документации.

Сценарий использования ППД в виде UML-диаграммы приведён на рисунке 2.5.

Рисунок 2.5 – Сценарий использования ППД

Разработанные сценарии использования подсистем определяют базовый функциональный состав КАОС.
2.2.3 Структурно-функциональная модель комплексной автоматизированной обучающей системы для профессиональной подготовки персонала АРКТ

На основе разработанных сценариев использования подсистем разработана структурно-функциональная модель КАОС (рисунок 2.6), обеспечивающей решение задач сопровождения эксплуатации АРКТ и поддержки принятия решений [80].

Структурно-функциональная модель определяет состав основных компонентов КАОС, ключевые модули, их функциональное назначение, интерфейсы и показывает перечень пользователей.

Важным аспектом при создании КАОС является начальное наполнение, которое должно формироваться на основании регламентирующих документов, описания реального оборудования АРКТ и технологических процессов, используемых эксплуатационными подразделениями, а также методического опыта по теоретической и практической подготовке, которыми владеет педагогический состав профильных отраслевых учебных заведений. Эта информация формируется в виде базы знаний и с использованием онтологической модели предметной области определяет технологию предоставления информации обучаемым. Соответственно, появляется возможность адаптировать работу обучающей системы с учётом новых требований руководящих документов и состава применяемого оборудования, благодаря актуализации базы знаний и корректировки онтологического описания предметной области.

Подсистемы КАОС являются логически связанными:

– руководитель обучения с использованием ПАП решает все задачи подготовки персонала от формирования групп и настройки курсов обучения до тестирования и формирования допусков к самостоятельной работе;
Рисунок 2.6 — Обобщенная структурно-функциональная модель КАОС

— обучаемый с использованием ЭИУ, ИТ и КТ имеет возможность пройти как теоретическую подготовку с использованием всех современных средств представления информации (2D-изображения, 3D-модели, анимация, мнемосхемы, карты, табличное, сетевое и ленточное представление технологических графиков и т.д.), так и практическую отработку навыков
выполнения технологических процессов и выхода из НшС, которые могут возникнуть при эксплуатации АРКТ;

– персонал АРКТ с помощью ППД решает повседневные эксплуатационные задачи, при этом, при возникновении НшС с использованием ППР процессы принятия обоснованных решений по выходу из НшС информационно поддерживаются и имеют большую результативность;

– администратор обеспечивает конфигурирование системы и обеспечение конфиденциальности информации;

– хранение информации, необходимой для обучения наземных служб обеспечения полетов, осуществляется в реляционной базе данных и базе знаний.

Предложенная структурно-функциональная модель обеспечивает реализацию всех функций, описанных в сценариях использования КАОС.

Следует отметить ключевые отличия представленной структурно-функциональной модели от существующих аналогов [80, 126, 60]. Интерактивные электронные технические руководства, описанные в литературе, в общем случае могут соответствовать или не соответствовать общепризнанным подходам и спецификациям (например, S1000D, CALS-технологии), но все они строятся по принципу структурированного представления информации без учёта особенностей усвоения данной информации обучаемым. В представленной структурно-функциональной модели предусмотрен модуль автоматической адаптации. Его основное назначение – обеспечить автоматическую подстройку курса в соответствии со степенью усвоения материала [80,50]. С участием педагогического состава профильных отраслевых университетов описывается онтологическая модель процесса усвоения материала, в том числе с учётом требований к специалистам наземных служб обеспечения полетов и современных методик обучения. Данная модель является основой для подготовки обучаемого с использованием интерактивного электронного руководства. В простейшем случае она включает повторное предоставление для изучения недостаточно усвоенных разделов документации.
Современные системы поддержки принятия решений обеспечивают поддержку руководителя работ при возникновении НшС, предоставляя не только текстовые описания алгоритмов выхода из данных ситуаций, но и соответствующие технологические графики [80, 113, 116, 120]. При этом соответствующие НшС можно условно назвать предусмотренными, т.к. для них предусмотрены готовые алгоритмы по выходу, при этом задача руководителя работ – найти в базе знаний наиболее подходящий алгоритм. Указанный подход оправдан при создании систем поддержки принятия решений, которые обеспечивают информационную поддержку руководителя работ при выполнении детерминированных технологических процессов.

Имитация НшС предусматривает их моделирование, позволяя обучающемуся вырабатывать навыки по поиску алгоритма выхода, но этим его функции не ограничиваются. Обеспечивается также работа с непредвиденными НшС – медленно развивающимися НшС с обязательным внешним проявлением, выход из которых может быть выполнен с использованием нескольких дополнительных операций технологического процесса. При этом предполагается, что описание данных непредвиденных НшС отсутствует в ЭД и в общем случае требуют формирования нового алгоритма выхода. Соответственно, после обнаружения НшС обучающийся должен, с одной стороны, определить отсутствие её описания в ЭД, с другой стороны, – принять решение о дальнейших действиях.

При обучении выходу из НшС модель в рамках КАОС расширена за счет учета стратегий, которых может придерживаться руководитель работ, и критериев принятия решения. В качестве стратегий могут выступать, во-первых, стремление выполнить целевую задачу без изменения срока окончания, во-вторых, намерение выполнить целевую задачу, но с переносом срока окончания, в-третьих, решение прекратить выполнение эксплуатационного процесса. В качестве критериев могут использоваться минимакс, максимин, критерии Байеса, Гурвица и другие. Модель реализуется в ППР и позволяет обучаемому формировать новые алгоритмы выхода из данных ситуаций.
Исходные данные для КАОС в виде учебных модулей, содержащих всю мультимедийную и текстовую информацию, а также программные модели и внешний вид элементов имитируемых систем и агрегатов и описание имитируемых технологических процессов вводятся на этапе разработки. В дальнейшем у руководителя обучения есть возможность изменить только последовательность обучения, состав изучаемых разделов и ввести новые непредвиденные НшС. Изменение базовой онтологической модели может выполнить только администратор, но сама модель изменяется разработчиками системы.

2.3 Реализация элементов комплексной автоматизированной обучающей системы для профессиональной подготовки персонала АРКТ

2.3.1 Электронный интерактивный учебник для обучения специалистов по эксплуатации транспортного и подъемно-установочного оборудования СК РН «Союз-2»

В данном ЭИУ учебный материал адаптирован для работы на персональном компьютере (т.е. каждая страница целиком отображается на экране), текст имеет гиперссылки (которые раскрывают понятия, дополняют текст
иллюстрациями, таблицами, видеороликами и т.п.), глоссарий (словарь), средства контроля качества усвоения учебного материала (рисунок 2.7). Учебный материал представлен в виде дерева обучения, имеющего иерархическую структуру, при помощи которого можно выбрать необходимый раздел для изучения.

Внутри каждого раздела приведено техническое описание изучаемого оборудования, его интерактивные 2D и 3D модели, принципиальные электрические, пневмо- и гидросхемы оборудования, показан принцип действия систем (агрегатов) и их компонентов, а также порядок выполнения технологических операций при применении оборудования по назначению, техническому обслуживанию, ремонте и т.д., с использованием анимации и звукового текстового сопровождения. Используя гиперссылки, можно выбрать объекты для изучения, начиная с элементов конструкции и заканчивая системой (агрегатом) в целом (рисунок 2.8). Техническое описание оборудования, его тактико-технические характеристики, порядок выполнения технологических операций, справочные таблицы и другие материалы приведены в строгом соответствии с конструкторской и эксплуатационной документацией.

Рисунок 2.7 – Представление учебного материала в ЭИУ

ЭИУ реализован в виде программного комплекса (ПК) обучения, который состоит из трех программных средств:
- графического отображения операций;
- управления процессами обучения и тестирования;
- контроля усвоения изучаемого материала.
Рисунок 2.8 – Окно представления учебного материала

Последний, в свою очередь, включает модуль оценки и контроля, позволяющий получить определенный результат (показатель), отражающий качество усвоения знаний (умений, навыков). Результатом работы модуля оценки и контроля являются сведения об уровне знаний конкретного обучающегося на текущий момент, на основе которых преподаватель управляет процессом обучения.

Все данные о процессе освоения учебного материала конкретным обучающимся, полученные оценки архивируются и позволяют осуществлять анализ степени усвоения программы обучения и сформировать предложения по устранению недостатков.

ЭИУ включается в состав аппаратно-программного комплекса (АПК), имеющего в своем составе серверную часть, сетевое оборудование, клиентскую часть – АРМ на базе ПЭВМ, общесистемное и специальное программное обеспечение.
2.3.2 Индивидуальный программный тренажер для обучения номеров расчета стартового комплекса РН «Протон-М»

В рамках ОКР «Старт» [100] для космодрома Байконур реализован ИТ, который представляет собой процедурный тренажёр, имитирующий реальное рабочее место оператора системы управления технологическим процессом (установка РКН на пусковое устройство; вертикализация и прицеливание РН; заправка составных частей РКН компонентами топлив, сжатыми газами; подготовка системы управления и двигательных установок РН и т.д. – по всем видам оборудования стартового комплекса «Протон-М»). Тренажёр позволяет выработать навыки выполнения соответствующих технологических операций по подготовке РКН к пуску.

В данном ИТ реализованы экранные симуляторы пультового оборудования и органов управления изучаемого оборудования. Запоминание правильной последовательности действий на начальном этапе подготовки достигается за счет тренинга путем блокирования неправильных действий. При этом пользователю предоставляется возможность не только управлять работой оборудования с помощью виртуальных органов управления, но и отслеживать его реакцию в целом, наблюдая на мониторе смоделированный отклик изучаемой системы. Таким образом, процесс приобретения навыков работы с пультовым оборудованием становится наглядным и глубоко осмысленным [100, 132].

Визуальные образы изучаемых объектов созданы с помощью программно генерируемой графики. Для реализации движений, динамических процессов или физических явлений использована программная анимация. Реализуется звуковое сопровождение тренинга (речевое сопровождение выполняемых технологических операций, команды, доклады и т.д.). Для большей наглядности процесса предусмотрено использование видеофрагментов.

Функциональная имитация изучаемого объекта представляет собой совокупность параметров, характеризующих состояние объекта в каждый момент времени и математические законы их изменения.
Взаимодействие пользователя с объектами компьютерного тренажера реализуется посредством воздействия манипулятором «мышь» на виртуальные органы управления или посредством использования сенсорного монитора.

Моделирование штатного эксплуатационного процесса и НШС выполняется на основе сценариев. В сценарии описаны правильная последовательность действий обучаемых, увязанных во времени в единый технологический процесс и зависящих от состояния изучаемого объекта. Сценарий определяет также воздействие на объекты, возникающие в результате действий обучаемых или в результате внешних событий. Компьютерный тренажер обеспечивает возможность выполнения правильных и неправильных действий обучаемым и в соответствии с заложенной моделью мира реагирует на воздействия, осуществляя изменение состояния объектов. Помимо штатных технологических процессов реализуется возможность подключения и моделирования сценариев возникновения НШС, а также выполнения обучаемым правильной последовательности действий для выхода из них и приведение объекта в штатное состояние.

В предлагаемой типовой архитектуре тренажера обеспечивается два способа управления информационной поддержкой. Интерактивное управление подразумевает отображение информации по требованию пользователя с учетом ситуации, в которой он находится. При контекстном управлении информация отображается не по инициативе пользователя, а в зависимости от текущей ситуации (например, если обучаемый допустил ошибку). В качестве информационной поддержки применяются текстовые и гипертекстовые структуры, флэш-анимация, диалоговые окна, таблицы, фотографии, трехмерные модели, мнемосхемы и т.д. (рисунок 2.9)

Структурно тренажер представляет собой специальное программное обеспечение двух типов автоматизированных рабочих мест (АРМ): руководителя обучения (инструктора) и обучающегося.

АРМ руководителя обучения является центральным звеном компьютерного тренажера и предназначен для решения следующих задач:
- настройка сеанса обучения/тренировки, которая включает в себя: выбор сценария и перечня моделируемых этапов технологического процесса, назначение конкретных операторов на роли обучаемых, указание состава и параметров моделирования НшС;

Рисунок 2.9 – Вариант реализации экранной формы индивидуального тренажера

- управление работой тренажера и синхронизация работы всех АРМ обучаемых в соответствии с заданным технологическим процессом, моделирование (изменение) состояний объектов по заложенной модели мира с учетом внутренних событий (действий обучаемых) и внешних параметров, заданных руководителем обучения;

- сбор с АРМ обучающихся и накопление статистики обучения с последующей записью информации в базу данных;

- обеспечение возможности руководителю обучения в режиме реального времени и в режиме послесеансного анализа контролировать ход выполнения технологического процесса, получать подробную и интегрированную
персонифицированную информацию о правильных и неправильных действиях обучаемых.

На АРМ обучающегося возлагаются следующие задачи:
- визуальное отображение виртуальных устройств управления и обеспечение возможности выполнения действий над ними обучаемым, реализация различных специальных эффектов с использованием двух- и трехмерной графики, флэш-анимации, средств мультимедиа;
- контроль действий обучаемого, проверка корректности выполненного действия, информирование обучаемых о некорректных действиях;
- информационная поддержка обучаемого с выводом на экран контекстной помощи в зависимости от выполняемых действий, этапа технологического процесса, событийной ситуации (например, возникновение НшС), а также показом учебных материалов в различных формах представления;
- обработка и выполнение внутренних управляющих команд тренажера, поступающих с АРМ руководителя обучения (например, команды на разрешение или запрет выполнения действий с устройствами управления, на изменение состояния объектов и т.д.);
- передача на АРМ руководителя обучения информации о совершенных обучаемым верных и неверных действиях в процессе выполнения технологического процесса [100, 132].

2.3.3 Коллективный программный тренажер для обучения номеров расчета заправочного оборудования РН «Союз-2»

Функциональные возможности:
- групповое обучение практическим навыкам и проведение тренировок;
- моделирование работы операторов с технологическим оборудованием и устройствами управления;
- моделирование работы личного состава в штатных технологических процессах и НшС, описанных в ЭД;
- автоматическое выполнение системой действий одного или нескольких обучаемых;
- моделирование голосовых команд;
- контроль действий обучаемых, формирование и сохранение протоколов правильных и ошибочных действий номеров боевых расчетов.

2.3.4 Подсистема информационной поддержки профессиональной деятельности персонала СК РН «Союз-2»

В рамках ОКР «Готовность» [99] реализована ППД, которая предназначена для автоматизации процессов сбора и представления оперативной информации о техническом состоянии оборудования СК РН «Союз-2», планирования эксплуатационных процессов и контроля их выполнения.
Функциональные возможности ППД:
- планирование работ, сбор, систематизация и представление повседневной оперативной информации о техническом состоянии оборудования СК, выполнения эксплуатационных процессов (ТО, ремонт, доработки, ремонтно-восстановительные и профилактические работы, освидетельствование, рекламационная работа и т.д.), запасах материально-технических средств и ЗИП и т.д.;
 - ведение в электронном виде ЭД и отчетной документации;
 - предоставление в электронном виде эксплуатационной, конструкторской, нормативно-технической и справочной документации.

2.3.5 Подсистема поддержки принятия решений при управлении эксплуатацией РКТ и возникновении НшС на ТК и СК РН «Союз-2»

В рамках ОКР «Радиент» [98] реализована ППР, которая предназначена для формирования у персонала ТК и СК РН «Союз-2» навыков принятия решений при возникновении НшС, а также информационной поддержки принятия решений при возникновении НшС в повседневной деятельности по эксплуатации РКТ.

Функциональные возможности:
- сбор, накопление и систематизация информации по имевшим место, описанным в ЭД НшС, порядку выхода из них;
 - предоставление информации по порядку выхода из аварийных ситуаций: перечень первоочередных мероприятий, список должностных лиц для оповещения, наиболее вероятные сценарии развития, вероятные зоны действия поражающих факторов, пути эвакуации личного состава и техники, места расположения аварийно-спасательных формирований и их оснащенность и т.д.

Схема построения подсистемы ППР по управлению эксплуатацией РКТ представлена на рисунке 2.11.
Рисунок 2.11 – Схема построения подсистемы ППР по управлению эксплуатацией РКТ

Рисунок 2.12 – Экранная форма представления информации при возникновении нSHOTной ситуации на стартовом комплексе
Экранная форма представления информации при возникновении НшС на СК представлена на рисунке 2.12: в левой части рисунка – сетевой график выполняемого технологического процесса и доклад о возникновении НшС; в правой части – порядок действий по выходу из НшС (описанной в ЭД или имевшей место ранее); в правой части – пути возможной эвакуации персонала.

ППР выполняет следующие функции:
- планирование и контроль исполнения технологических графиков выполнения работ на техническом (ТК) и стартовом (СК) комплексах;
- ведение данных о НшС при проведении работ на ТК и СК;
- подготовка предложений для принятия решений соответствующими ЛПР при проведении работ на ТК и СК;
- представление интегрированной информации для анализа и принятия решений при возникновении НшС, организации аварийно-спасательных работ;
- систематизированное хранение, поиск и просмотр информации о НшС при подготовке и пуске РКН;
- формирование технического задания (ТЗ) и технических решений по устранению НшС;
- предоставление вариантов выхода из НшС и расчет времени выхода из неё;
- информационное взаимодействие между должностными лицами в процессе проведения работ на ТК и СК;
- ведение данных о действиях персонала при проведении работ на ТК и СК;
- учет персонала, эксплуатирующего системы и агрегаты ТК и СК;
- учёт и контроль допусков к самостоятельной работе персонала, эксплуатирующего системы и агрегаты ТК и СК;
- поиск информации по справочникам.

Список функций может быть изменен и дополнен в зависимости от объекта эксплуатации и специфики проводимых работ.
2.4 Модели процесса подготовки персонала АРКТ с использованием КАОС

2.4.1 Анализ основных моделей обучения

В основу функционирования КАОС могут быть положены модели обучения, опирающиеся на интерактивное взаимодействие обучаемого специалиста с имитационными моделями технических систем и/или окружающей среды.

Особое значение для эффективного использования КАОС имеет адекватность используемой в ее основе модели обучения и выработки профессиональных навыков.

В основе применяемых в настоящее время образовательных технологий в явной или неявной форме чаще всего используется так называемая модель «полного усвоения» [153], в соответствии с которой фиксированным параметром обучения является именно результат, а все другие параметры обучения могут меняться, подстраиваясь под достижение учащимся этого заданного результата. В результате система гарантирует достижение необходимого уровня практически всем обучающимся.

Проведенный в [96] анализ показал, что в образовательном процессе наиболее широко применяется метод итеративного обучения, понимаемый как многократное повторение обучаемых действий, проб, попыток и т.д. для достижения фиксированной цели при постоянных внешних условиях. Именно итеративное обучение лежит в основе формирования компетенций у обучающегося. Конкретный вид кривой обучения как зависимость показателя обученности от времени или числа циклов подготовки зависит от многих факторов и может быть получен эмпирическим путем для конкретных групп обучающихся. Как показано в [96], не существует общей кривой обучения, пригодной для любого образовательного процесса, а большинство используемых при построении подобных моделей принципов носит характер гипотез. Тем не менее, можно представить кривую обучения в общем виде как логистическую.
кривую [96, 105] (рисунок 2.13) зависимости текущего уровня обученности (уровня знаний) от учебного времени t:

$$Z(t) = [Z_0 + (Z_1 - Z_0)(1 - e^{-\gamma t})]e^{-\eta t},$$

где Z_0 – начальный (исходный) объём знаний;
Z_1 – конечный (требуемый) объём знаний;
γ, η – интенсивность получения и забывания знаний соответственно.

(2.1)

Рисунок 2.13 – Логистическая кривая обучения

В качестве основных временных единиц чаще всего используются учебные часы или учебные занятия длительностью соответственно 1 или 2 академических часа.

При этом значения γ и η могут быть получены эмпирически при известных значениях начального и конечного объема знаний для конкретных учебных дисциплин [105, 115].

Достаточно часто используются кривые обучения, аппроксимируемые экспоненциональными кривыми, которые в общем виде описываются зависимостью текущего значения показателя обученности $x(t)$ (или x_n) от учебного времени t (количество циклов науления n) и имеют вид (рисунок 2.14):

$$x(t) = x^\infty + (x^0 - x^\infty)e^{-\gamma t}, \ t > 0,$$

или

$$x_n = x^\infty + (x^0 - x^\infty)e^{-\gamma n}, n = 0, 1, 2, \ldots, m.$$

(2.2)

(2.3)

где x^0 – начальное значение показателя обученности (соответствующее моменту начала обучения),
x^∞ – конечное значение показателя обученности, к которому асимптотически стремится кривая обучения.
При более сложных видах обучения кривая может иметь плато, наличие которого объясняется скрытыми поисками обучающимся новых путей совершенствования способов выполнения требуемых действий, подготовке его к качественно новому способу овладения деятельностью, новой стратегии. На рисунке 2.15 приведен достаточно распространенный тип кривой обучения с промежуточным плато: две последовательные экспоненты соответствуют отработке двух различных стратегий действий.

Рисунок 2.15 – Кривая обучения с промежуточным плато

Замедленно-асимптотический вид кривых обучения позволяет учесть вышеуказанные закономерности итеративного обучения как наиболее распространенного вида обучения.
Различают два аспекта обучения [96]: 1) результативный, связанный с достижением определенного результата; 2) процессуальный, отражающий адаптацию обучающегося к некоторому виду действий, в нашем случае – к типовому алгоритму подготовки и принятия решения. Предложенные показатели обученности в целом отражают оба аспекта обучения.

Эмпирические наблюдения содержат свидетельства того, что обучение может относительно важных описательных черт протекать как непрерывно, так и демонстрировать явные разрывы, резкие изменения параметров [40].

Методом обучения, который предполагает такие разрывы, является скачкообразное обучение, предполагающее появление у обучающегося эффекта инсайта – мгновенного изменения в позитивную сторону показателя обученности, что свидетельствует о достаточно глубоком усвоении им учебного материала. На рисунке 2.16 изображены типичные кривые обучения, описывающие изменение количества сделанных обучающимся ошибок Е от исходного значения до конечного Етр. штриховая линия – традиционное итеративное обучение, штрихпунктирная линия – обучение, предполагающее инсайт, сплошная – последовательное наступление нескольких промежуточных инсайтов.

Явление инсайта в образовательном процессе весьма желательно, однако конкретные рекомендации по его получению в образовательном процессе в различных предметных областях пока отсутствуют.

В прикладных исследованиях по моделям обучения в образовательном процессе подготовки инженеров весьма часто используется аппроксимация процесса обучения экспоненциальной кривой [151]. Однако на практике часто наблюдается отличие реального процесса обучения от экспоненциальной кривой. Это связано с тем, что в процессе обучения возникают периоды стабилизации уровня обученности \(x(t) \) и даже его снижение (рис. 2.17). Указанное обстоятельство учитывается трансформационной теорией обучения, которая описывает динамику обучения как волнообразный процесс.
Трансформационность обучения согласуется с образованием у обучающихся новой стратегии мышления на основе полученных во время тренировок знаний, навыков и умений, а также образованием их интерференции между собой [151].

Это обстоятельство должно учитываться при планировании перехода от предыдущего блока обучения к последующему до полного завершения освоения
предыдущего. В частности, НшС и действия в них следует рассматривать уже с начальных этапов образовательного процесса (предусмотренные НшС), а в ходе выполнения задач последующих этапов целесообразно усложнять задачи, связанные с поиском решения по выходу из НшС.

При разработке КАОС целесообразно учитывать иерархию ЛПР и их полномочия при принятии решений. Это должно найти свое отражение в базах данных, а также в модуле моделирования КАОС.

Рассмотренные модели нашли свое отражение в методике использования КАОС в процессе профессиональной подготовки специалистов по эксплуатации АРКТ, приведенной в 4-й главе.

2.4.2 Построение индивидуальной образовательной траектории при обучении с использованием КАОС

Для количественной оценки результативности обучения, формулируемой в соответствии с требованиями действующих федеральных образовательных стандартов в рамках триады «знания – умения – навыки», предлагается использовать более сложную модель образовательного процесса в виде [33, 90]:

$$\frac{dx}{dt} = a\tau \left(\frac{y}{y_r} + \frac{z}{z_r} \right) \left(1 + \frac{x}{x_m} \right)$$ (2.4)

где

- x - знания (теоретический когнитивный компонент компетенций),
- y - умения (операционно-технологический компонент компетентности),
- z - навыки (экспериментальный компонент компетенций, представляющий собой умения, доведенные до автоматизма в результате многократного повторения типовых заданий), то есть динамически стереотипный аспект компетентности [33, 115]),

- a - постоянная памяти, определяемая разностью скоростей запоминания и забывания информации,

- τ - доля времени, отводимого учебным планом на теоретические занятия,

- x_m - максимальное количество информации, содержащейся в осваиваемых знаниях,
y_r, z_r - требуемые объемы умений и навыков.

Экспериментальные оценки параметров приведенных моделей показывают значительную дисперсию данных показателей даже среди обычных учебных групп высших учебных заведений. Так, например, в работе [135] полученное экспериментально среднее значение интенсивности забывания для студентов технического ВУЗа составило $\eta = 25 \cdot 10^{-6} \text{ 1/час}$. При этом наблюдался значительный разброс оценки, от $1 \cdot 10^{-6}$ до $75 \cdot 10^{-6} \text{ 1/час}$.

Таким образом, наблюдается дифференциация в характеристиках усвоения учебного материала более чем в 70 раз для обучающихся, объединенных в одну группу.

Более того, исследования последних лет [62, 115] показывают наличие феномена неспособности к полному усвоению вне зависимости от времени, предоставленного на обучения и интенсивности процесса обучения.

Следовательно, применение к такой группе единой траектории обучения, рассчитанной на гипотетического «среднего» обучающегося не может дать эффективный результат. Задача обеспечения индивидуальной учебной траектории с дифференциацией сложности и скорости освоения материала становится реальной насущной задачей.

В последнее время все чаще ставится вопрос о необходимости широкого применения технологии, получившей название «индивидуальная образовательная траектория» (ИОТ). ИОТ представляет собой сложное понятие, пришедшее в педагогику из физики, обладающее более широким значением и предполагающее несколько направлений реализации:
- содержательный (вариативные учебные планы и образовательные программы),
- деятельностный (специальные педагогические технологии),
- процессуальный (организационный аспект) [115].

Традиционная для современных АОС схема функционирования включает последовательность, состоящую, как минимум, из следующих этапов, каждый из которых направлен на усвоение учащимися определенной порции учебного материала:
- предъявление порции теоретической информации, предназначенной для усвоения;
- выполнение упражнений для осмысления и закрепления теории;
- оказание (в случае необходимости) помощи учащемуся при выполнении учебно-тренировочных заданий.

Порядок работы обучаемого в условиях применения АОС определяется либо жестким сценарием, заданным разработчиком, либо выбирается из набора типовых сценарных схем, либо соответствует определенному адаптивному алгоритму, в задачу которого может быть поставлено либо минимизация времени обучения при фиксированном уровне обученности, либо максимизация уровня обученности при фиксированном времени обучения [139].

При разработке модели функционирования КАОС за основу взята модель, описанная в [139]. Простейшая модель функционирования КАОС представлена графиком и его матрицей на рисунке 2.18. Данная модель действует на каждом из пяти этапов обучения, а именно:

Этап 1 – получение теоретических знаний о конструкции комплекса АРКТ, принципах его действия, правилах и мерах безопасности (ПМБ) при его эксплуатации (с использованием ЭИУ, ПАП).

Этап 2 – изучение технологии эксплуатации комплекса АРКТ, порядка выполнения типовых технологических операций и эксплуатационных процессов, проводимых с комплексом (с использованием ЭИУ, ПАП).

Этап 3 – формирование умений и навыков практического индивидуального выполнения типовых технологических операций и эксплуатационных процессов (с использованием ЭИУ, ИТ, ПАП).

Этап 4 – приобретение навыков практической работы в команде в составе расчета (бригады), в т.ч. навыков руководства расчетом, включая принятие решений в при возникновении НшС, описанных в ЭД (предусмотренных) (с использованием ЭИУ, ИТ, КТ, ППР, ПАП).

Этап 5 – приобретение компетенций по принятию обоснованных решений по выходу из непредвиденных НшС (с использованием ЭИУ, ИТ, КТ, ППР, ПАП).
Рисунок 2.18 – Ориентированный граф модели функционирования КАОС и его матрица смежности

Вершина графа Z – это количество контрольных заданий (вопросов или упражнений), которые предъявляются обучаемому в процессе подготовки на КАОС для усвоения какого-либо учебного материала.

Вершина $УП$ – это уровень подготовленности, который вычисляется как отношение $УП = \frac{ПО}{Z}$, где $ПО$ – количество правильных выполненных контрольных заданий (ответов на вопросы). Очевидно, что значение $УП$ лежит в интервале $[0,1]$.

Вершина $Π$ – это уровень помощи, оказываемой обучаемому в ходе выполнения контрольных заданий (упражнений). Это может быть подсказка, намек, теоретическая информация или полный ответ на вопрос (полное описание процесса решения упражнения). В зависимости от степени полноты помощи величина $Π$ представляется в интервале $[0,1]$, где 0 – это отсутствие помощи; 1 – полное решение контрольного задания (ответ на вопрос) преподавателем (инструктором) с разбором и обоснованием.

Ребра данного графа, кроме ориентации, характеризуются числовыми параметрами дуг a_k ($k = 1,2,\ldots,6$). Суть параметров a_k можно пояснить на примере так называемого знакового ориентированного графа (рис. 2.18). Дуга, связывающая вершину Z с вершиной $УП$, имеет знак +. Это означает, что увеличение количества вопросов-упражнений ведет к увеличению уровня подготовленности, а уменьшение Z – к уменьшению $УП$. Дуга, связывающая $УП$ с Z имеет знак -. Это означает, что увеличение $УП$ ведет к уменьшению Z, а
уменьшение УП - к увеличению З. Знаковый граф является частным случаем взвешенного ориентированного графа, когда параметры \(a_k \) целочисленные и принимают значения +1 или -1, что отображается в матрице смежности. Таким образом, на начальном этапе построения модели устанавливаются на качественном уровне связи между различными характеристиками процесса обучения на КАОС [139].

В процессе моделирования сценария реального процесса обучения появляются дополнительные факторы, которые кардинальным образом изменяют линейную схему образовательного процесса, что может быть продемонстрировано переходом от простейшей модели обучения (рис.2.18), к более сложным моделям, учитывающим индивидуальные способности обучаемого, как представлено на рисунке 2.19 [139].

В модель включены такие дополнительные факторы (вершины):
- **УМ** - объем изучаемого учебного материала;
- **УС** - уровень сложности материала;
- **Сп** - уровень способностей обучаемого.

Рисунок 2.19 – Детализированный граф модели обучения с применением КАОС
Их величины, характеризующие исходные показатели моделируемого процесса, также можно нормировать к интервалу [0,1]. В данной модели они оказывают влияние лишь на вершины \(Z, УП и \Pi \), но обратных связей от них не имеют. Влияние друг на друга вершины \(УМ, УС, Сп \) также не оказывают. Анализ позволяет определить знаки ребер (Таблица 2.1).

Таблица 2.1 – Знаки ребер ориентированного графа

<table>
<thead>
<tr>
<th></th>
<th>(a_1)</th>
<th>(a_2)</th>
<th>(a_3)</th>
<th>(a_4)</th>
<th>(a_5)</th>
<th>(a_6)</th>
<th>(a_7)</th>
<th>(a_8)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Таблица 2.1 – Знаки ребер ориентированного графа (продолжение)

<table>
<thead>
<tr>
<th></th>
<th>(a_9)</th>
<th>(a_{10})</th>
<th>(a_{11})</th>
<th>(a_{12})</th>
<th>(a_{13})</th>
<th>(a_{14})</th>
<th>(a_{15})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
</tr>
</tbody>
</table>

Предложенная модель позволяет строить ИОТ для каждого обучающегося. Рекомендации по ее построению приведены в главе 4.

2.4.3 Использование мониторинга функционального состояния обучаемых и его влияние на оценку сформированности профессиональных компетенций

Для повышения результативности процесса обучения в состав КАОС может быть интегрирован канал контроля за изменением функционального состояния обучаемого во время отработки им задач по выходу из НШС. При этом практическая форма реализации контроля может осуществляться как без использования приборных систем, так и с их использованием.

Возможная схема контроля функционального состояния обучающегося с использованием приборного оборудования (рисунок 2.20) предполагает использование дополнительных технических средств, позволяющих оценить текущее психофизиологическое состояние субъекта [20, 85, 115].
Этот вариант реализации обеспечивает наглядность наблюдений за функциональным состоянием обучающегося и контроля освоения им методик эффективного поведения в различных ситуациях.

При этом подобные системы контроля должны быть двухуровневыми. Первый уровень предназначен для самокontrolя оператора за своим состоянием, а второй – для внешнего супервизорного наблюдения, связанного с принятием решений о допуске или отстранении конкретного исполнителя от работы.

Мониторинг изменений состояния обучаемого при выполнении им заданий тренажерной подготовки может использоваться для формирования целостного заключения о степени выработанности профессиональных навыков и готовности перехода к занятиям в условиях реальной практической деятельности. Именно это подох позволяет построить индивидуальную траекторию обучения не только по внешнему контролю правильности действий специалиста, но и на основании данных о так называемой «внутренней» или «функциональной» стоимости деятельности специалиста [115].

В результате использования предложенного подхода придется кардинально пересмотреть методику оценки качества выработанности профессиональных компетенций в процессе обучения.
Классический подход к оцениванию результата обучения по наблюдениям за деятельность специалиста в какой-либо ситуации может быть сведен к критерию качества, близкому к тем, которые используются для характеристик автоматических систем управления.

Например, если в результате выполнения тестового производственного задания специалист должен обеспечить изменение исходного состояния управляемого им объекта X_0 до конечного состояния X_T вдоль заданной траектории $X^*(t)$, то простейшая оценка точности выполнения заданных действий может быть получена в виде

$$I = \int_0^\infty (X^*(t) - X(t))A(X^*(t) - X(t))' \, dt$$ \hspace{1cm} (2.5)

где I – интегральная оценка качества выполнения задания, A – выбранная матрица весовых коэффициентов.

Если теперь функциональное состояние организма обучающегося во время выполнения тестового задания охарактеризовать вектором параметров $Y(t)$, а его функциональное состояние, принятое за норму $Y^*(t)$, то совокупная оценка качества выполнения задания может быть задана в виде

$$I = \int_0^\infty ((X^*(t) - X(t))A(X^*(t) - X(t))' +$$

$$+(Y^*(t) - Y(t))B(Y^*(t) - Y(t))') \, dt$$ \hspace{1cm} (2.6)

где A, B – задаваемые матрицы весовых коэффициентов.

В результате появляется возможность более точно оценивать процесс формирования необходимых профессиональных навыков и принципиально по-новому формировать мотивацию профессионального роста [33, 85].

Предложенная количественная оценка эффективности выполнения задания может выставить более высокий бал обучающемуся, допустившему незначительные отклонения от заданной траектории, но выполнявшему задание с меньшим психофизиологическим напряжением [33, 85, 115].
Выводы по главе 2

1. Предложен подход к формированию КАОС, что позволяет объединить разрозненные решения и сформировать новую комплексную систему, обеспечивающую решение задач профессиональной подготовки персонала наземных служб эксплуатации комплексов авиационной и ракетно-космической техники, а также решение задач аттестации персонала, автоматизации рабочих мест и поддержки принятия решений.

2. Определены и охарактеризованы задачи КАОС, которые могут быть реализованы в рамках нескольких подсистем:
 - электронный интерактивный учебник;
 - программный тренажер для выработки индивидуальных практических навыков выполнения операций;
 - программный тренажер для выработки практических навыков выполнения операций в составе подразделений;
 - подсистема аттестации персонала;
 - подсистема поддержки принятия решений при возникновении НшС;
 - подсистема информационной поддержки профессиональной деятельности.

3. Разработаны сценарии использования подсистем КАОС. На их основе разработана структурно-функциональная модель КАОС, обеспечивающая решение задач сопровождения эксплуатации АРКТ и поддержки принятия решений. Структурно-функциональная модель определяет состав основных компонентов системы, ключевые модули, их функциональное назначение, интерфейсы и обеспечивает доступ пользователей с различными правами. Одной из основных особенностей разработанной структурно-функциональной модели является модуль моделирования, обеспечивающий функционирование математических моделей оборудования и технологических процессов.

4. Приведены описания и характеристики подсистем КАОС (ЭИУ, ИТ, КТ, ПАП, ППР, ППД), разработанных в процессе создания учебно-тренировочных средств и средств поддержки эксплуатации для персонала, эксплуатирующего
объекты наземной космической инфраструктуры космодромов Плесецк и Байконур.

5. На основе анализа основных положений итеративного и трансформационного научения разработаны предложения по методике обучения персонала АРКТ с использованием КАОС в части действий по выходу из нештатных ситуаций.
ГЛАВА 3. РАЗРАБОТКА НАУЧНО-МЕТОДИЧЕСКОГО АППАРАТА ПОДГОТОВКИ ПЕРСОНАЛА К ДЕЙСТВИЯМ В НЕШТАТНЫХ СИТУАЦИЯХ

Подготовка к действиям в НшС является одним из важнейших этапов профессиональной подготовки персонала. Для его осуществления необходимо выполнение следующих условий:

- должен быть разработан научно-методический аппарат функционирования подсистемы поддержки принятия решений;
- персонал должен освоить предшествующие составляющие КАОС, такие как изучение конструкции изделия, технологии его эксплуатации, приобретение навыков выполнения типовых операций.

Решения, которые необходимо принимать при эксплуатации изделия, можно условно разделить на две группы:

1) связанные с поиском необходимой информации, которая есть в базе данных, и последующем ее оформлении в форме эксплуатационного документа (плана, технического задания, акта и др.). При этом предполагается, что подобные решения ранее уже принимались, аналоги сложившейся ситуации есть, и решения являются типовыми;

2) связанные с обоснованием последовательности действий в условиях отсутствия аналогов.

По первой группе решений есть достаточно наработок как теоретической [116, 130], так и практической направленности [131]. В частности, в эту группу входят предусмотренные НшС.

По второй группе наработок пока немного. С усложнением объектов эксплуатации количество ситуаций, требующих принятия решений второй группы, будет только возрастать, поскольку заранее невозможно предусмотреть все возможные сочетания воздействующих факторов и варианты поведения объекта [30, 149].
Задача подготовки персонала по действиям в подобных ситуациях представляется весьма актуальной, и важным вкладом в ее решение является разработка научно-методического аппарата процесса обучения персонала действиям в непредвиденных НшС, который предусматривает следующие этапы:

- обоснование класса НшС, для которого разрабатывается научно-методический аппарат;
- разработка модели развития НшС;
- анализ и обоснование возможных решений, которые могут быть приняты персоналом;
- разработка модели оценивания последствий возможных решений;
- анализ и обоснование критерия принятия решения по выходу из НшС;
- разработка модели (алгоритма) принятия решения по выходу из НшС.

Решение первой из перечисленных задач приведено в главе 1, поэтому рассмотрим модель развития НшС.

3.1 Модель развития нештатной ситуации как последовательность принимаемых решений

Как было отмечено в главе 1, основное внимание в работе уделяется исследованию непредвиденных НшС (не описанных в ЭД и не происходивших ранее) с обязательным внешним проявлением, выход из которых предполагает последовательность принимаемых решений, т.е. условно может быть разделен на несколько шагов (этапов). При этом под этапом принятия решения понимается период времени, в течение которого осуществляется процесс анализа информации, оценивания возможных вариантов решения, выбора приемлемого варианта по обоснованному критерию, его реализация вплоть до поступления информации, либо обусловливающей необходимость принятия следующего решения, либо свидетельствующей о возвращении процесса в штатный режим. Количество этапов принятия решения заранее не известно.
Если в результате принятого решения объект переходит в штатное (планируемое данным решением) состояние, то дальнейших решений не требуется. В противном случае, т.е. при появлении информации, свидетельствующей о том, что процесс изменения состояния происходит не в соответствии с принятым решением (выход из НшС не происходит), требуется принятие нового решения на основе анализа сложившейся ситуации.

Модели развития подобных НшС могут базироваться на математическом аппарате теории графов [103, 70], теории случайных процессов [37], теории нечетких множеств [56, 48, 156], теории игр [142], теории принятия решений [104]. С точки зрения поставленной задачи модель развития НшС должна описывать процесс последовательного принятия решений ЛПР по выходу из НшС. Такой подход обусловлен следующими причинами:

- ЛПР должно на основе анализа возникшей ситуации сформулировать цель выхода из НшС, или, иными словами, выбрать стратегию выхода из НшС;
- в результате принятого решения состояние объекта, на котором произошла НшС, изменяется, и модель должна описывать возможные исходы этого решения;
- модель НшС должна позволять оценивать целевой результат всех возможных решений (цену решений) и возможность реализации исходов этих решений;
- модель должна позволять принимать решение по различным критериям, описывающим различные предпочтения ЛПР: значимость выполнения процесса и возможность его переноса, риск возникновения аварии, последствия невыполнения процесса и т.д.).

Для формирования когнитивных компетенций по принятию решений по выходу из НшС был выбран аппарат теории игр [142].

Процесс возникновения и развития НшС можно представить в виде антагонистической игры Г с двумя участниками: ЛПР, задачей которого является выход из нештатной ситуации, и сама НшС, развитие которой может происходить по различным сценариям, в том числе и в зависимости от принимаемых ЛПР
решений [113, 158]. При этом второй игрок (НшС) является фиктивным игроком (ФИ).

При формулировании цели игры для ЛПР естественно предположить, что ЛПР заинтересовано в максимально возможном выигрыше. Выигрыш представляет собой не только достижение целевого результата процесса, или выполнение целевой задачи (ВЦЗ), но и недопущение тяжких (серьезных, значительных) последствий развития НшС, т.е. предотвращение возможного ущерба или, по крайней мере, сокращение его до минимума.

Что касается целей ФИ, то о них ничего нельзя точно сказать ввиду неопределенности, связанной с причинами возникновения НшС и возможными сценариями ее развития. Тем не менее, на основе пессимистического подхода [104] можно предположить, что фиктивный игрок препятствует достижению цели ЛПР и стремится минимизировать его выигрыш.

Таким образом, цель ЛПР в модели антагонистической игры состоит в максимизации выигрыша, включающего как достижение цели проводимого процесса, так и предотвращение возможного ущерба вследствие развития НшС в аварийную (катастрофическую). Цель ФИ состоит в минимизации выигрыша ЛПР (в максимальном ущербе от развития НшС).

Тогда игра Г представляет собой кортеж:

\[\Gamma = <2, \{s_i\}_{i=1}^{2}, \{H_i\}_{i=1}^{2} >= <A, B, H>, \]

где \(s_i \) - множество стратегий \(i \) го игрока;

\(H_i \) - множество выигрышей \(i \) го игрока;

\(A \) - множество стратегий 1-го игрока (ЛПР);

\(B \) - множество стратегий 2-го игрока (ФИ);

\(H \) - множество выигрышей 1-го игрока (проигрышей 2-го игрока).

Под стратегией ЛПР понимается выбранная цель выхода из НшС и совокупность действий по ее достижению [113, 158].

Сначала рассмотрим цели, которые могут стоять перед ЛПР при принятии решения по выходу из НшС.
В зависимости от внешнего проявления НшС, накопленного опыта выхода из подобных ситуаций (или его отсутствия), имеющегося запаса времени, ресурсов, влияния проводимой операции на конечный результат и других факторов, ЛПР может действовать с различными целями.

Во-первых, оперативное устранение НшС и продолжение выполнения целевой задачи для получения требуемого целевого результата.

Во-вторых, остановка выполнения операции, установление причины возникновения НшС, ее устранение с привлечением дополнительных ресурсов и времени, а затем ВЦЗ.

В-третьих, немедленное прекращение текущей операции и других сопряженных работ с целью недопущения развития НшС до аварии (катастрофы) и отказ от ВЦЗ.

Соответственно этим целевым установкам выбираются стратегии ЛПР.

\(a_1 \) – стратегия 1, направленная на устранение причины НшС и дальнейшее продолжение работы по первоначальному плану.

\(a_2 \) – стратегия 2, связанная с отсрочкой (или дополнительными ресурсами) для установления причины НшС и принятия решения о дальнейшем продолжении работы после устранения причины НшС.

\(a_3 \) – стратегия 3, связанная с отменой дальнейших работ и необходимостью выхода из НшС (прекращение работ, эвакуация персонала, недопущение аварийного развития НшС).

Таким образом, множество стратегий 1-го игрока (ЛПР) представляет собой кортеж из трех элементов:

\[A_{<3>} = \langle a_1, a_2, a_3 \rangle. \quad (3.2) \]

Основная сложность при принятии стратегии ЛПР состоит в неопределенности сценариев развития НшС. Эта неопределенность описывается стратегиями ФИ.
В наиболее благоприятном для ЛПР случае НшС допускает оперативное устранение причины ее возникновения и дальнейшее выполнение операции с заданными параметрами.

Второй вид возможных сценариев развития НшС предполагает привлечение дополнительных ресурсов, задержку, дальнейшее выполнение операции только после устранения причины НшС.

Третья ситуация не допускает дальнейшего выполнения операции и требует отмены ВЦЗ (прекращение работ, при этом авария не происходит).

Четвертая ситуация предполагает аварийное (катастрофическое) развитие ситуации.

В соответствии с возможными сценариями развития НшС определяются стратегии ФИ.

\[b_1 \] – стратегия 1, допускающая продолжение работы по применению объекта по первоначальному плану. НшС не влияет на ВЦЗ или ее устранение не требует дополнительных затрат времени и ресурсов;

\[b_2 \] – стратегия 2, предполагающая дополнительные затраты времени и / или ресурсов для выхода из НшС и дальнейшее ВЦЗ;

\[b_3 \] – стратегия 3, обусловливающая необходимость отмены дальнейших работ по применению объекта (ВЦЗ) и проведение работ по выходу из НшС;

\[b_4 \] – стратегия 4, связанная с аварийным развитием НшС.

Таким образом, множество стратегий 2-го игрока (ФИ) представляет собой кортеж из четырех элементов:

\[B_{\Delta} = \langle b_1, b_2, b_3, b_4 \rangle. \]

Матрица цены игры (выигрышей игроков) при использовании ими всех выбранных стратегий представляет собой множество выигрышей 1-го игрока – ЛПР (или проигрышей 2-го игрока – ФИ) и имеет вид:
\[H_{[3,4]} = \begin{bmatrix} h_{11} & h_{12} & h_{13} & h_{14} \\ h_{21} & h_{22} & h_{23} & h_{24} \\ h_{31} & h_{32} & h_{33} & h_{34} \end{bmatrix}, \quad (3.4) \]

gде \(h_{ij} \) - выигрыш первого игрока (ЛПР), реализующего \(i \)-ю стратегию при условии, что 2-й игрок (ФИ) использует \(j \)-ю стратегию.

Обозначим возможные сочетания ситуаций, характеризующих выборы игроками различных стратегий, через \((i, j)\).

Реализация стратегии \(a_1 \) приводит к штатному ВЦЗ в ситуации (1,1), к ВЦЗ с дополнительными незапланированными ресурсами - в ситуации (1,2), к отмене ВЦЗ и сохранению объекта в целостности - в ситуации (1,3), к происшествию (аварии, катастрофе) - в ситуации (1,4).

Реализация стратегии \(a_2 \) приводит к ВЦЗ с дополнительными незапланированными ресурсами в ситуации (2,1), к ВЦЗ с дополнительными запланированными ресурсами в ситуации (2,2), к отмене ВЦЗ - в ситуации (2,3), к происшествию - в ситуации (2,4).

Реализация стратегии \(a_3 \) приводит к отмене ВЦЗ во всех ситуациях.

При этом выигрыш ФИ равен выигрышу ЛПР с обратным знаком (по определению антагонистической игры).

Первый ход делает ФИ, в результате которого проявляются факторы, свидетельствующие о возникновении НшС. ЛПР оценивает ситуацию и принимает решение (ответный ход), и т.д. до выхода из НшС.

Следующий шаг – определение выигрышей игроков при различных сочетаниях стратегий.
3.2 Оценивание последствий возможных решений по выходу из нештатной ситуации

Все компоненты, составляющие стоимость цены игры (возможного выигрыша или проигрыша) при выборе и реализации того или иного решения, можно разделить на следующие пять групп (рисунок 3.1):

1) стоимость ВЦЗ \(C^{ВЦЗ} \), отражающая целевой результат проводимого процесса;

2) затраты \(C^{Вых} \), связанные с проведением работ по выходу из НшС. Они включают затраты \(C^{Пл} \) на выполнение запланированных работ в соответствии с принятым решением и затраты \(C^{НПл} \) на проведение работ, необходимость в проведении которых появилась в процессе выполнения плановых работ;

3) стоимость отказа от ВЦЗ \(C^{Отк} \). Как правило, эта составляющая обусловлена не только потерями, связанными с невыполнением целевой задачи.
ВЦЗ, но и с предотвращенным ущербом $C_{\text{Пред}}$, на что, собственно, и направлено решение об отказе от ВЦЗ, и затратами на отмену ВЦЗ $C_{\text{Отм}}$.

4) затраты $C_{\text{штраф}}$, на штрафные санкции, связанные с отказом от ВЦЗ;

5) затраты $C_{\text{Ущ}}$, обусловленные происшествием (аварией, катастрофой), которое произошло вследствие невывода из НшС. Эти затраты включают в себя следующие составляющие:

а) затраты $C_{\text{ТехнУщ}} = C_{\text{Техн}}$, связанные с выходом из строя техники;

б) затраты $C_{\text{ПерсУщ}} = C_{\text{Перс}}$, связанные с гибелью персонала, нанесением ущерба здоровью людей (увечья, травмы);

в) затраты $C_{\text{СопрУщ}} = C_{\text{Сопр}}$, связанные с нанесением ущерба сопряженным объектам;

г) затраты $C_{\text{эколУщ}} = C_{\text{экол}}$, связанные с нанесением ущерба окружающей среде.

В соответствии с [118] можно выделить следующие виды происшествий:

- катастрофа (уничтожение летательного аппарата, наземного комплекса, травмирование и гибель людей),

- авария (гибель летательного аппарата в полете вследствие ошибочного решения по выходу из НшС, при этом наземный комплекс не поврежден, наземный персонал не пострадал);

- поломка (выход из строя летательного аппарата и/или наземного комплекса).

В общем случае все стоимости, затраты и потери являются случайными величинами, которые зависят от воздействия множества различных факторов. Поэтому в дальнейшем будут рассматриваться их средние значения.

Стоимость ВЦЗ $C_{\text{ВЦЗ}}$ может быть оценена исходя из следующих соображений. Во-первых, это получаемый целевой эффект — вывод космического аппарата на заданную орбиту, доставка пассажиров или груза к месту назначения, обеспечение потребителей товарами и услугами, стоимость которого определяется в договорах, контрактах и других документах. Во-вторых, стоимость работ по поддержанию заданного состояния объекта эксплуатации,
необходимого для ВЦЗ. Как правило, стоимость ВЦЗ известна и задана. В первом приближении ее можно считать постоянной.

Затраты $C^{Вых}$, обусловленные необходимостью проведения работ по выходу из НшС, рассчитываются по формуле:

$$C^{Вых} = C^{Пл} + C^{НПл}.$$ \(3.5\)

Первая составляющая ($C^{Пл}$) связана с затратами на проведение запланированных работ, которые являются сутью принятого решения по выходу из НшС. Эти работы включают проверку работоспособности элементов и, при необходимости, их замену, получение дополнительной информации о состоянии объекта, сопутствующих факторах внешнего воздействия и др., и их стоимость может быть определена достаточно просто. Вторая составляющая затраты ($C^{НПл}$) связана с проведением подобных работ, необходимость в проведении которых появилась уже в процессе выполнения плановых работ.

Стоимость отказа от ВЦЗ $C^{Омк}$ можно определить по формуле:

$$C^{Омк} = C^{Пред} - C^{Вых} - C^{Омк}.$$ \(3.6\)

Стоимость предотвращенного ущерба $C^{Пред}$ может быть оценена, как стоимость последствий происшествия (аварии, катастрофы) $C^{Ущ}$, которое могло бы произойти, если бы не принятое ЛПР решение. Третья составляющая ($C^{Омк}$) связана с затратами на проведение работ по отмене ВЦЗ (слив компонентов топлива из баков, замена воздушного судна, снятие ракеты космического назначения с пускового устройства и т.д.).

Затраты $C^{Ущ}$, обусловленные происшествием (аварией, катастрофой), могут быть рассчитаны по формуле:

$$C^{Ущ} = C^{Техн} + C^{Пе} + C^{Сопр} + C^{Э}

Затраты на выход из строя техники $C^{Техн}$, а также сопряженных объектов $C^{Сопр}$, обусловлены стоимостью необходимых ремонтно-восстановительных работ и могут быть оценены достаточно точно.
Затраты $С_{\text{Перс}}$, связанные с травмированием и гибелью персонала, могут быть оценены в соответствии с условиями страхования здоровья и жизни эксплуатирующего персонала.

Штрафные санкции $C_{\text{Штраф}}$ обусловлены невыполнением договорных обязательств по своевременному проведению эксплуатационного процесса. Размер $C_{\text{Штраф}}$ во многом определяется условиями страхования. Во многих случаях можно предположить, что величина штрафных санкций определяется задержкой в выполнении процесса к назначенному сроку (например, запуск космического аппарата, плановый рейс самолета) и формально представляет собой функцию, вид которой может быть оговорен условиями контракта:

$$
C_{\text{Штраф}} = C_{\text{Штраф}}(\Delta \tau),
$$

где $\Delta \tau$ – продолжительность задержки при выполнении эксплуатационного процесса.

Подходы к оцениванию возможного ущерба приведены в руководящих документах и источниках [7, 9, 10, 12, 127, 129].

Так, в [7] рассматриваются оценки ущерба для жизни и здоровья персонала вследствие воздействия поражающих (опасных, вредных) факторов, классификация которых приведена в ГОСТ Р 22.0.07-95 [10] и ГОСТ 12.0.003-74 [12]. Типичными поражающими факторами при авариях объектов АРКТ являются:

1) воздушная ударная волна, возникающая:
 а) при взрывных превращениях облаков топливо-воздушных смесей (в соответствии с РД 03-409-01 [127]), возникающих, в частности при испарении компонентов топлив с поверхности пролива;
 б) при взрывах резервуаров с перегретой жидкостью (в соответствии с ГОСТ Р 12.3.047-98 [9]), в том числе емкостей при пожаре;
 в) при взрывах сосудов, работающих под давлением под давлением [69];
 г) при взрывах конденсированных взрывчатых веществ;
2) тепловое излучение:
а) продуктов горения при пожаре пролива компонентов топлив (в соответствии с ГОСТ Р 12.3.047-98 [9]);

б) при объемных пожарах в зданиях и сооружениях [92];

3) токсическое поражение вследствие выброса опасных химических веществ и их воздействия на людей (в соответствии с РД 03-26-2007 [128]);

4) обломки или осколки, создаваемые летящими фрагментами технологического оборудования, строительных конструкций и т.д. [69].

Общий подход к оценке ущерба изложен в руководящем документе РД 03-496-02 [129], который определяет структуру материального ущерба (рисунок 3.2).

Рисунок 3.2 – Структура материального ущерба от аварии

При этом целесообразно использовать соответствующие справочники, нормативную и техническую документацию, а также экспертные заключения, касающиеся конкретного объекта.

Полученные выражения позволяют заполнить матрицу $H_{4,3}$.

Определим выигрыши (проигрыши) ЛПР при выборе различных стратегий.
Значение h_1 представляет собой максимальный выигрыш первого игрока (ЛПР). Это стоимость ВЦЗ $C_{влп}$. Стратегия a_1 в этой ситуации является правильным решением, поскольку она соответствует стратегии b_1 ФИ и, следовательно, отражает наиболее благоприятное для ЛПР сочетание стратегий обоих игроков. Таким образом, $h_1 = C_{влп}$.

Значение h_{12} описывает выигрыш ЛПР в случае выбора им стратегии a_1 в условиях, когда ФИ выбрал стратегию b_2. Поэтому выигрыш, связанный с ВЦЗ, должен быть уменьшен на величину незапланированных затрат $C_{пл}$. Это неверное, но не катастрофическое решение, отражающее необоснованный оптимистический подход и приведющее к незапланированным потерям: $h_{12} = C_{влп} - C_{пл}$.

Значение h_{13} описывает проигрыш первого игрока (ЛПР), связанный с невыполнением целевой задачи, что обусловлено неверным решением, отражающим необоснованный оптимистический подход: $h_{13} = -C_{влп}$.

Значение h_{14} описывает максимальный проигрыш ЛПР, связанный с невыполнением целевой задачи $C_{влп}$ и происшествием на объекте $C_{ущ}$. Это неверное катастрофическое решение, отражающее необоснованный оптимистический подход. Значение h_{14} равно: $h_{14} = -C_{влп} - C_{ущ}$.

Выигрыши (проигрыши) ЛПР при выборе им второй стратегии, направленной на ВЦЗ с дополнительными затратами, оцениваются аналогично.

Значение h_{21} - это выигрыш ЛПР, связанный с ВЦЗ, уменьшенный на величину запланированных затрат $C_{пл}$, обусловленных выбранной ЛПР стратегией a_2, хотя ситуация (стратегия ФИ b_1) не требовала дополнительных затрат (неверное решение, отражающее пессимистический подход и приведшее к запланированным потерям, которых можно было избежать: $h_{21} = C_{влп} - C_{пл}$).

Значение h_{22} - выигрыш ЛПР, связанный с ВЦЗ и уменьшенный на величину запланированных затрат $C_{пл}$ в соответствии с выбранной ЛПР стратегией a_2 (правильное решение, отражающее обоснованный подход при
стратегии ФИ b_2 и приведшее к минимально возможным в сложившейся ситуации запланированным потерям: $h_{22} = C^{BИЗ} - C^{ПЗ}$.

Значение h_{23} - это проигрыш ЛПР, связанный с невыполнением целевой задачи и величиной запланированных затрат $C^{ПЗ}$, что обусловлено неверным решением ЛПР, отражающим необоснованный оптимистический подход в ситуации, когда ФИ выбрал стратегию b_3: $h_{23} = -C^{BИЗ} - C^{ПЗ}$.

Значение h_{24} - проигрыш ЛПР, связанный с невыполнением целевой задачи, величиной запланированных затрат $C^{ПЗ}$ в соответствии с принятым решением о дополнительных ресурсах, и происшествием на объекте (неверное, катастрофическое решение, отражающее необоснованный оптимистический подход в ситуации, когда ФИ выбрал стратегию b_4: $h_{24} = -C^{BИЗ} - C^{ПЗ} - C^{Уш}$).

Определим стоимость решений ЛПР при выборе им стратегии a_3, направленной на отказ от ВЦЗ.

Значение h_{31} - проигрыш ЛПР, связанный с отказом от ВЦЗ (невыполнением целевой задачи) и величиной запланированных затрат на отказ от ВЦЗ $C^{Омц}$ в ситуации, которая допускала ВЦЗ. Это обусловлено неверным решением ЛПР, отражающим пессимистический подход, неоправданный в данной ситуации (при выбранной ФИ стратегии b_1): $h_{31} = -C^{BИЗ} - C^{Омц}$.

Значение h_{32} - проигрыш ЛПР, связанный с отказом от ВЦЗ и величиной запланированных затрат на отказ от ВЦЗ $C^{Омц}$ в ситуации, которая допускала ВЦЗ с дополнительными ресурсами $C^{ПЗ}$. Это обусловлено неверным решением ЛПР, отражающим пессимистический подход, неоправданный в данной ситуации (при стратегии ФИ b_2): $h_{32} = C^{ПЗ} - C^{BИЗ} - C^{Омц}$.

Значение h_{33} - стоимость решения ЛПР, связанная с плановыми работами по отказу от ВЦЗ $C^{Омц}$ в соответствии с выбранной стратегией a_3. Это правильное решение, отражающее обоснованный пессимистический подход и приведшее к минимально возможным в сложившейся ситуации (при стратегии ФИ b_3) запланированным потерям: $h_{33} = -C^{Омц}$.

Изложенные выше высказывания основаны на предположении, что ЛПР и ФИ имеют одинаковые ожидаемые затраты на выполнение работ и могут рассматриваться как равноправные исполнители.
Значение \(h_{34} \) - стоимость решения ЛПР, связанная с плановыми работами по отказу от ВЦЗ \(C^{Опп} \) и предотвращенным ущербом от возможного происшествия \(C^{Пред} \). Это правильное решение, отражающее обоснованный подход при выбранной ФИ стратегии \(b_4 \): \(h_{34} = C^{Пред} - C^{Опп} \).

Таким образом, матрица \(H_{[3,4]} \) будет иметь вид:

\[
H_{[3,4]} = \begin{pmatrix}
 h_{11} & h_{12} & h_{13} & h_{14} \\
 h_{21} & h_{22} & h_{23} & h_{24} \\
 h_{31} & h_{32} & h_{33} & h_{34}
\end{pmatrix}
= \begin{pmatrix}
 C^{ВЦЗ} & C^{ВЦЗ} - C^{Пл} & -C^{БУЗ} & -C^{пл} - C^{Ущ} \\
 C^{ВЦЗ} - C^{Пл} & C^{ВЦЗ} - C^{Пл} & -C^{БУЗ} & -C^{Пл} - C^{Ущ} \\
 -C^{ВЦЗ} - C^{Опп} & C^{Пл} - C^{ВЦЗ} - C^{Опп} & -C^{Опп} & C^{Пред} - C^{Опп}
\end{pmatrix}
\]

(3.9)

Учтем, что разрабатываемая модель развития НшС необходима для подготовки персонала. Поэтому, с одной стороны, она должна отражать специфику его эксплуатационной деятельности, с другой – помогать персоналу приобрести навыки типовых действий в НшС. Примем следующие допущения.

1. Реализация стратегии \(a_3 \) на всех этапах принятия решения однозначно приводит к выходу из НшС, при этом происшествие не происходит, но целевая задача не выполняется.

2. При оценивании ущерба от происшествия (аварии, катастрофы) предполагается, что реализуется пессимистический вариант – с наибольшим возможным ущербом.

Применительно к рассматриваемой задаче обоснования решения по выходу из НшС с наименьшими потерями игру можно представить как последовательность шагов (этапов принятия решения ЛПР) по выходу из НшС с учетом имеющейся информации о возможном развитии НшС и принятой ЛПР стратегии. При этом на каждом шаге в распоряжении ЛПР есть определенная совокупность действий, отражающих реализацию принятого решения. Количество этапов принятия решения заранее не известно.
После каждого этапа (т.е. появления информации об изменении состояния объекта и обусловленной этим возможности сделать вывод о правильности принятого на этом этапе решения) возможны следующие варианты:

1) если решение было принято правильно (принятое решение соответствовало сценарию развития НшС), то дальнейшее развитие событий происходит по штатной схеме и задача выхода из НшС решена;

2) если решение было принято неправильно (принятое решение не соответствовало сценарию развития НшС), то с учетом появившейся информации следует вновь решать задачу принятия решения.

Классические методы решения задачи в детерминированной постановке позволяют получить оптимальное решение \(a^*_i \) на основе принципа максимина [104] – решение, соответствующее максимально возможному выигрышу в наихудших условиях:

\[
 a^*_i = \text{Arg} \max_i \min_j h_j(a_i, b_j). \tag{3.10}
\]

Однако, поскольку существует изначальная неопределенность в реализации сценариев развития НшС (стратегиях ФИ \(b_j \)), то использование чистых стратегий невозможно.

3.3 Оценивание возможностей реализации различных сценариев развития нештатной ситуации

Использование методов теории вероятностей весьма ограниченно и обусловлено наличием данных, которые можно анализировать с помощью законов распределения вероятностей, в частности, показаний средств измерений с учетом их метрологических характеристик.
3.3.1. Оценивание показаний средств измерений вероятностными методами

В ряде случаев на основе показаний средств измерений с учетом их метрологических характеристик и влиянии этих показаний на выполнение целевой задачи можно оценить вероятности следующих событий:

- попадание измеренной величины в заданный интервал,
- превышение измеренной величиной заданного допустимого значения,
- недостижение измеренной величиной установленного нижнего предела.

Рассмотрим следующую прикладную задачу.

Дано: измеренное значение параметра $X_{изм}$, класс точности средства измерения ($K_г$ или $K_δ$), минимальное $X_{доп1}$ и максимальное $X_{доп2}$ допустимые значения измеренной величины. Целевая задача выполняется, если истинное значение измеренной величины $\hat{X}_{изм}$ лежит в пределах $X_{доп1} \leq \hat{X}_{изм} \leq X_{доп2}$. В противном случае задача не выполняется, а при $\hat{X}_{изм} > X_{доп2}$ возникает аварийная ситуация.

При таких показаниях средства измерения найти:

1) вероятность того, что целевая задача может быть выполнена (не выполнена);
2) вероятность того, что возникла аварийная ситуация.

Пусть измеренная величина равна $X_{изм}$, класс точности средства измерений равен $K_г$ и определен по приведенной погрешности $γ$:

$$ K_г = 0.01γ = \frac{\hat{X}_{изм} - X_{изм}}{X_N}, \quad (3.11) $$

где X_N - нормирующее значение шкалы средства измерения, необходимое для определения класса точности по приведенной погрешности;

\wedge - символ случайной величины.

Тогда истинное значение измеренной $\hat{X}_{изм}$ величины лежит в следующих пределах:

$$ X_1 = X_{изм} - X_N \cdot 0.01γ \leq \hat{X}_{изм} \leq X_{изм} + X_N \cdot 0.01γ = X_2. \quad (3.12) $$
Пусть класс точности средства измерений K_δ определен по относительной погрешности δ:

$$K_\delta = 0.01\delta = \frac{|\hat{X}_{изм} - X_{изм}|}{\hat{X}_{изм}}.$$ \hspace{1cm} (3.13)

Истинное значение измеренной величины в этом случае лежит в следующих пределах:

$$X_1 = \frac{X_{изм}}{1 + 0.01\delta} \leq \hat{X}_{изм} \leq \frac{X_{изм}}{1 - 0.01\delta} = X_2,$$ \hspace{1cm} (3.14)

Зная эти значения (X_1 и X_2) и определив взаимосвязь между ними и различными исходами выхода из НшС (в данном случае, ВЦЗ, невыполнением целевой задачи и возникновением аварийной ситуации), можно найти вероятности этих исходов.

Для описания распределения случайной величины $\hat{X}_{изм}$ можно принять любой закон при наличии объективных данных, обусловливающих его применимость. В случае, когда такая информация отсутствует, целесообразно использовать равномерное распределение, поскольку оно максимально учитывает неопределенность ситуации и отражает пессимистический подход.

Расчет вероятностей различных исходов зависит от взаимного расположения значений X_1, X_2, $X_{доп1}$ и $X_{доп2}$. При этом измеренное значение $X_{изм}$ находится между X_1 и X_2.

Рассмотрим возможные варианты.

1. $X_1 \leq X_{доп1} \leq X_{доп2} \leq X_2$ (рисунок 3.3).

![Рисунок 3.3 – Вариант 1](image-url)
Вероятность $P_{НВЦЗ}$ того, что целевая задача может быть не выполнена (истинное значение $\hat{x}_{\text{изм}}$ измеренной величины не превышает минимально допустимого значения $X_{\text{доп}}$), равна:

$$P_{НВЦЗ} = \text{Bep}(\hat{x}_{\text{изм}} < X_{\text{доп}}) = \frac{X_{\text{доп}} - X_1}{X_2 - X_1}.$$ \hfill (3.15)

Вероятность $P_{ВЦЗ}$ того, что целевая задача может быть выполнена (истинное значение $\hat{x}_{\text{изм}}$ измеренной величины находится между $X_{\text{доп}}$ и $X_{\text{доп2}}$), равна:

$$P_{ВЦЗ} = \text{Bep}(X_{\text{доп}} \leq \hat{x}_{\text{изм}} \leq X_{\text{доп2}}) = \frac{X_{\text{доп2}} - X_{\text{доп}}}{X_2 - X_1}.$$ \hfill (3.16)

Вероятность $P_{ав}$ того, что возникнет аварийная ситуация ($\hat{x}_{\text{изм}}$ превышает $X_{\text{доп2}}$), равна:

$$P_{ав} = \text{Bep}(\hat{x}_{\text{изм}} > X_{\text{доп2}}) = \frac{X_2 - X_{\text{доп2}}}{X_2 - X_1}.$$ \hfill (3.17)

2. $X_1 \leq X_{\text{доп}} \leq X_2 \leq X_{\text{доп2}}$ (рисунок 3.4).

Рисунок 3.4 – Вариант 2

Вероятность $P_{НВЦЗ}$ такая же, как и в первом случае:

$$P_{НВЦЗ} = \text{Bep}(\hat{x}_{\text{изм}} < X_{\text{доп}}) = \frac{X_{\text{доп}} - X_1}{X_2 - X_1}.$$ \hfill (3.18)

Вероятность $P_{ВЦЗ}$ равна:

$$P_{ВЦЗ} = \text{Bep}(X_{\text{доп}} \leq \hat{x}_{\text{изм}} \leq X_{\text{доп2}}) = \frac{X_2 - X_{\text{доп}}}{X_2 - X_1}.$$ \hfill (3.19)

Вероятность $P_{ав}$ в данном случае равна 0.

3. $X_1 \leq X_{\text{доп}} \leq X_2 \leq X_{\text{доп2}}$ (рисунок 3.5).
Вероятность $P_{НВЦЗ}$ в данном случае равна 1, а вероятности $P_{ВЦЗ}$ и $P_а$ равны 0.

4. $X_{доп} \leq X_1 \leq X_{доп2} \leq X_2$ (рисунок 3.6).

Вероятность $P_{НВЦЗ}$ в этом случае равна 0.

Вероятность $P_{ВЦЗ}$ равна:

$$P_{ВЦЗ} = \text{Bep}(X_{доп} \leq \hat{X}_{вм} \leq X_{доп2}) = \frac{X_{доп2} - X_1}{X_2 - X_1}. \quad (3.20)$$

Вероятность $P_а$ в данном случае равна:

$$P_а = \text{Bep}(\hat{X}_{вм} > X_{доп2}) = \frac{X_2 - X_{доп2}}{X_2 - X_1}. \quad (3.21)$$

5. $X_{доп} \leq X_1 \leq X_2 \leq X_{доп2}$ (рисунок 3.7).

Для данного случая $P_{НВЦЗ}$ и $P_а$ равны 0, а $P_{ВЦЗ}$ равна 1.
6. $x_{дон} \leq x_{дон2} \leq x_1 \leq x_2$ (рисунок 3.8).

Рисунок 3.8 – Вариант 6

Для данного случая $P_{НВЦЗ}$ и $P_{ВЦЗ}$ равны 0, а $P_{ав}$ равна 1.

Полученные значения вероятностей можно учитывать при оценке вероятностей реализации различных сценариев НшС.

Проанализируем, как класс точности средств измерений влияет на значения вероятностей $P_{НВЦЗ}$, $P_{ВЦЗ}$ и $P_{ав}$.

Пусть $x_{изм} = 100$, $x_N = 100$, $x_{дон} = 97,5$, $x_{дон2} = 104,5$. Рассчитаем для различных значений классов точности соответствующие вероятности. Будем считать, что класс точности средств измерений определен по приведенной погрешности.

Результаты расчетов сведем в таблицу 3.1.

Таблица 3.1 – Результаты расчетов

<table>
<thead>
<tr>
<th>Класс точности $K_γ$</th>
<th>X_1</th>
<th>X_2</th>
<th>№ варианта</th>
<th>$P_{НВЦЗ}$</th>
<th>$P_{ВЦЗ}$</th>
<th>$P_{ав}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>99</td>
<td>101</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>98</td>
<td>102</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>97</td>
<td>103</td>
<td>2</td>
<td>0,083</td>
<td>0,917</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>96</td>
<td>104</td>
<td>2</td>
<td>0,188</td>
<td>0,812</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>95</td>
<td>105</td>
<td>1</td>
<td>0,25</td>
<td>0,700</td>
<td>0,05</td>
</tr>
<tr>
<td>6</td>
<td>94</td>
<td>106</td>
<td>1</td>
<td>0,292</td>
<td>0,583</td>
<td>0,125</td>
</tr>
<tr>
<td>7</td>
<td>93</td>
<td>107</td>
<td>1</td>
<td>0,321</td>
<td>0,500</td>
<td>0,179</td>
</tr>
<tr>
<td>8</td>
<td>92</td>
<td>108</td>
<td>1</td>
<td>0,343</td>
<td>0,438</td>
<td>0,219</td>
</tr>
<tr>
<td>9</td>
<td>91</td>
<td>109</td>
<td>1</td>
<td>0,361</td>
<td>0,389</td>
<td>0,250</td>
</tr>
<tr>
<td>10</td>
<td>90</td>
<td>110</td>
<td>1</td>
<td>0,375</td>
<td>0,350</td>
<td>0,275</td>
</tr>
</tbody>
</table>
На основании этих данных можно построить график (рисунок 3.9)

Рисунок 3.9 – Зависимость различных исходов процесса от класса точности средств измерений

Анализ этого графика позволяет сделать следующие выводы.

1. Чем ниже класс точности средства измерений, тем больше вероятность того, что возникла аварийная ситуация и тем меньше вероятность успешного выполнения целевой задачи.

2. Измеренные средствами с невысоким классом точности величины нельзя использовать в качестве критерия выбора решения о дальнейших действиях. Необходимо оценить вероятности различных исходов с учетом возможного разброса значений измеренной величины.

3. Средства измерений с низким классом точности целесообразно использовать как индикаторные.

Однако далеко не всегда можно установить взаимосвязь показаний средств измерений с возможностями реализации различных сценариев НшС. Поэтому их применение носит ограниченный характер.

В общем случае оценка возможных вариантов реализации сценариев НшС происходит в условиях неопределенности (в принципе отсутствует статистика по непредвиденным НшС, неизвестны законы распределения факторов,
характеризующих данную ситуацию). Поэтому использование классических методов теории вероятностей не представляется возможным. Целесообразно оценивать возможности реализации сценариев НшС на основе теории нечетких множеств.

В нашем случае в распоряжении ЛПР имеется три стратегии (см. формулу (3.2)), а в распоряжении фиктивного игрока – четыре (см. формулу (3.3)).

Выбор решения ЛПР (т.е. выбор одной из трех стратегий \(a_1, a_2, a_3 \)) обусловлен теми последствиями, к которым это решение может привести, что полностью определяется стратегией, выбранной фиктивным игроком (сценарием развития НшС). Если выбранная ЛПР стратегия соответствует сценарию развития НшС, то выход из НшС будет соответствовать принятому решению, в противном случае выход из НшС приведет к незапланированным потерям, вплоть до аварии. Так образом, задача ЛПР состоит в том, чтобы оценить, по какому сценарию будет развиваться НшС, и выбрать решение, соответствующее этому сценарию. Поэтому при решении задачи выбора стратегии ЛПР можно ограничиться только вектором стратегий фиктивного игрока, описывающим возможности реализации возможных сценариев развития НшС. Тогда:

\[
P_{<d>} = \langle p_1, p_2, p_3, p_4 \rangle ,
\]

где \(p_1 \) – возможность реализации стратегии \(b_1 \);

\(p_2 \) – возможность реализации стратегии \(b_2 \);

\(p_3 \) – возможность реализации стратегии \(b_3 \);

\(p_4 = p_{aa} \) – возможность реализации стратегии \(b_4 \).

При этом должно быть выполнено условие нормировки:

\[
\sum p_i = 1 ,
\]

(3.23)
3.3.2. Оценивание возможностей реализации сценариев на основе теории нечетких множеств

Альтернативой вероятностному подходу является подход на основе нечетких множеств и теории возможности [56, 48, 147, 156]. Его целесообразно применять, если нет других способов, кроме субъективной оценки возможности события.

Основной задачей является оценка возможности реализации одного из четырех возможных сценариев развития НшС, которые приводят к следующим результатам: 1) выполнение целевой задачи без ограничений (ВЦЗ); 2) выполнение целевой задачи с ограничениями, задержками (ВЦЗО); 3) отмена выполнения целевой задачи (ОВЦЗ); 4) происшествие (авария, катастрофа, поломка), связанное с невыполнением целевой задачи (НВЦЗ).

Оценки этих возможностей являются основой для принятия решения, направленного на достижение одной из целей: 1) ВЦЗ; 2) ВЦЗО; 3) ОВЦЗ, в том числе для предотвращения происшествия. О правильности решения можно судить только после выхода из НшС в зависимости от того, какой из сценариев был реализован.

Поэтому целесообразно использовать лингвистическую переменную P_i^* ($i = 1(1)4$) «возможность реализации i-го сценария развития НшС».

Количество значений этой переменной может быть различным. Слишком маленькое их количество, например, два – малая и большая, – может привести к очень грубым выводам, а слишком большое, например, девять – пренебрежимо малая, очень малая, достаточно малая, малая, средняя, не большая и не малая, достаточно большая, большая, очень большая, – к невозможности различать соседние значения лингвистической переменной.

Опыт показывает, что человек достаточно хорошо может оценить до пяти градаций возможности какого-либо события. С учетом решаемой задачи и особенностей образовательного процесса целесообразно использовать следующие значения лингвистической переменной P_i^*: пренебрежимо малая, малая, средняя, большая, очень большая.
большая, очень большая. Крайние значения переменной (пренебрежимо малая и очень большая) отражают крайнюю степень уверенности ЛПР в том, что событие, соответственно, не произойдет или произойдет. Это особенно важно для оценивания реализации 4-го сценария развития НшС (происшествия), поскольку к возможности безаварийной эксплуатации (или возможности аварии) АРКТ, как правило, требования предъявляются, что дает возможность устанавливать границы значений терма пренебрежимо малая на отрезке [0, 1].

Тогда терм-множество \(T(P_i^+) \) каждой лингвистической переменной \(P_i^+ (i = 1(1)4) \) состоит из пяти элементов:

\[
T(P_i^+) = \{ \text{пренебрежимо малая, малая, средняя, большая, очень большая} \}. \tag{3.24}
\]

Оценка этих возможностей базируется на опыте эксплуатации данного изделия, результатах схемного анализа, а также на анализе сопутствующих факторов и их значений:

- внешние проявления;
- объективные данные (показания средств измерений) и их точность;
- оставшаяся принципиальная (неустранимая) неопределенность в развитии данного сценария;

- предпочтения системы вышестоящего уровня, связанные с важностью (приоритетом) ВЦЗ, сохранением объекта эксплуатации, инфраструктуры, недопущением происшествия и т.д.

Какие суждения может сделать ЛПР? Если он уверен в том, что данный сценарий будет реализован почти наверняка, то возможность этого события очень большая.

Если реализация данного сценария весьма возможна, то возможность этого события можно трактовать как большую.

Если реализация данного сценария вполне возможна, но есть некоторые сомнения, то возможность этого события можно трактовать как среднюю.
Если реализация данного сценария возможна, но только при определенном стечении обстоятельств, факторов, которые неизвестны, то возможность этого события можно трактовать как малую.

Если же ЛПР уверен в том, что данный сценарий почти наверняка не будет реализован, то возможность этого события пренебрежимо малая.

А. Построение функций принадлежности лингвистических переменных

Теперь необходимо на интервале [0; 1] определить граничные значения, которые, по мнению ЛПР, описывают упомянутые значения лингвистической переменной \(P^i \) (\(i = 1(1)4 \)), построить функции принадлежности \(\mu_j \) (\(j = 1(1)5 \)) искомых лингвистических переменных к нечетким множествам, характеризуемым элементами терм-множества, и оценить возможности реализации каждого сценария развития НшС.

Наименьшее значение возможности «пренебрежимо малая» \(P_{\text{пм}}^{\min} \) совпадает с левым граничным значением интервала [0; 1] и равно 0.

Наибольшее значение возможности «пренебрежимо малая» \(P_{\text{пм}}^{\max} \) определяется допустимым риском, т.е. максимально возможным значением возможности развития аварийной ситуации. В руководящих документах по эксплуатации АРКТ есть требование, что вероятность безаварийного применения комплекса должна быть не менее 0,995. Есть и более жесткие требования: не менее 0,9999. Поэтому наибольшее значение возможности «пренебрежимо малая» \(P_{\text{пм}}^{\max} \) выбирается из ряда 0,001; 0,005; 0,01; 0,05.

Наименьшее значение возможности «малая» \(P_{\text{м}}^{\min} \) можно принять равным середине интервала значений «пренебрежимо малая», т.е. \(P_{\text{пм}}^{\max} / 2 \).
Наибольшее значение возможности "малая" $P_{м}^{max}$ можно принять равным 0,5, исходя из того, что событие, возможность которого меньше 0,5, может произойти, но, скорее всего, не произойдет.

Наименьшее значение возможности «большая» $P_{б}^{min}$ может быть принято равным наибольшему значению возможности «малая», т.е. 0,5.

Наименьшее значение возможности «очень большая» $P_{об}^{min}$ определяется, исходя из принципа практической достоверности [142] и, как правило, выбирается из ряда: 0,8; 0,85; 0,9; 0,95.

Наибольшее значение возможности «очень большая» $P_{об}^{max}$ совпадает с правым граничным значением интервала [0; 1] и равно 1.

Наибольшее значение возможности «большая» ($P_{б}^{max}$) может быть связано с серединой интервала $[P_{об}^{min}; 1]$ значения возможности «очень большая», т.е. быть равным $\frac{1+P_{об}^{min}}{2}$.

Возможность «средняя» занимает промежуточное (среднее) место между возможностями «малая» и «большая». Исходя из этого, наименьшее значение возможности «средняя» $P_{ср}^{min}$ может быть принято равным середине интервала $[P_{м}^{min}, P_{м}^{max}]$, т.е. 0,25.

Наибольшее значение возможности «средняя» $P_{ср}^{max}$ определяется аналогично и может быть принято равным середине интервала $[P_{б}^{min}, P_{б}^{max}]$, т.е. 0,75.

Таким образом, на шкале возможных значений (т.е. на интервале [0; 1]) выделяются пять интервалов (в общем случае их может быть больше):

- практически невозможное событие, возможность этого события пренебрежимо мала и лежит в интервале [0; $P_{п.м}^{max}$];

- маловозможное событие, возможность этого события малая и лежит в интервале в интервале $[\frac{P_{п.м}^{max}}{2}; \frac{P_{м}^{min}+P_{м}^{max}}{2}]$;
- вполне возможное событие, возможность этого события средняя и лежит в интервале в интервале \([P_{c}^{min} ; P_{c}^{max}]\);
- весьма возможное событие, возможность этого события большая и лежит в интервале в интервале \([0,5; \frac{1+P_{c}^{min}}{2}]\);
- практически достоверное событие, возможность этого события большая и лежит в интервале в интервале \([P_{c}^{max} ; 1]\).

Графическая интерпретация этих рассуждений представлена на рисунке 3.10.

Функции принадлежности \(\mu_{j} (j = 1(1)5)\) для возможностей реализации каждого из сценариев развития НшС могут иметь произвольный вид [156]: треугольный, трапецеидный, симповиный, z-образный и др.

Выбор конкретного вида функции принадлежности обусловлен следующими обстоятельствами.

1. Если восприятие лицом, принимающим решение, при изменении аргумента внутри интервала соответствующего элемента терм-множества не изменяется, то целесообразно использовать трапецеидную функцию принадлежности с ядром, которое занимает большую часть интервала. Снижение значений функции принадлежности у границ интервала отражает неопределенность отнесения приграничных значений аргумента к смежным элементам терм-множества.

2. Если вышеуказанное восприятие может ассоциироваться со средним значением аргумента (в середине интервала), при отдалении от которого значения аргумента в меньшей степени ассоциируются с данным элементом терм-множества, то целесообразно использовать колоколообразную, треугольную или иную подобную симметричную функцию принадлежности.

3. Если можно указать граничные значения аргумента, при которых можно сделать однозначный вывод о принадлежности (или непринадлежности) указанных значений соответствующему элементу терм-множества, то
целесообразно использовать линейную или \(z \)-образную или иную подобную функцию принадлежности.

Возможности реализации сценария выхода из НШС

Пренебрежимо малая Малая Средняя Большая Очень большая

0 \(P_{\text{пм}}^{\text{max}} \) \(P_{\text{с}}^{\text{min}} \) (0,25) \(P_{\text{м}}^{\text{max}} \) (0,5) \(P_{\text{с}}^{\text{max}} \) (0,75) \(P_{\text{об}}^{\text{min}} \) 1

Рисунок 3.10 – Нечеткие значения возможностей реализации сценариев выхода из НШС

С учетом вышеизложенного для нечетких множеств, характеризуемых значениями «пренебрежимо малая», «малая», «большая» и «очень большая», целесообразно выбрать линейную функцию принадлежности. Так, чем ближе значение аргумента (оцениваемой возможности) к допустимому значению аварии, тем меньшее значение должна иметь функция принадлежности, и чем ближе она к нулю, тем, соответственно, большее.

Для значения возможности «средняя» целесообразно выбрать треугольную функцию принадлежности. Значения аргумента лингвистической вероятности «средняя» группируются вокруг среднего значения (0,5) и чем ближе к значениям, соответствующим малой и большой возможности, тем меньше значение функции принадлежности. С учетом этого функции принадлежности имеют вид, представленный на рисунке 3.11.
Выражения для функций принадлежности имеют вид:

\[
\mu_1 = \mu_{m,m} = \begin{cases}
\frac{x}{P_{m}^{\text{max}}} + 1, & 0 \leq x \leq P_{m}^{\text{max}} \\
0, & x > P_{m}^{\text{max}}
\end{cases}
\]

\[
\mu_2 = \mu_{m} = \begin{cases}
\frac{x}{P_{m}^{\text{max}}} + 1, & \frac{P_{m}^{\text{max}}}{2} \leq x \leq P_{m}^{\text{max}} \\
0, & x > P_{m}^{\text{max}}
\end{cases}
\]

\[
\mu_3 = \mu_{c} = \begin{cases}
\frac{2(x - P_{c}^{\text{min}})}{P_{c}^{\text{max}} - P_{c}^{\text{min}}}, & P_{c}^{\text{min}} \leq x \leq \frac{P_{c}^{\text{min}} + P_{c}^{\text{max}}}{2} \\
\frac{2(P_{c}^{\text{max}} - x)}{P_{c}^{\text{max}} - P_{c}^{\text{min}}}, & \frac{P_{c}^{\text{min}} + P_{c}^{\text{max}}}{2} < x \leq P_{c}^{\text{max}} \\
0, & x < P_{c}^{\text{min}}; \ x > P_{c}^{\text{max}}
\end{cases}
\]

\[
\mu_4 = \mu_{b} = \begin{cases}
0, & 0 \leq x \leq P_{b}^{\text{max}} \\
\frac{x - P_{b}^{\text{max}}}{1 - P_{b}^{\text{max}}}, & P_{b}^{\text{max}} < x \leq \frac{1 + P_{b}^{\text{max}}}{2}
\end{cases}
\]

Рисунок 3.11 – Функции принадлежности нечетких значений возможностей реализации сценариев выхода из НшС
Теперь на основании данных, характеризующих возникшую НшС, необходимо на основе процедуры нечеткого логического вывода оценить возможности реализации возможных результатов выхода из НшС, осуществить дефаззификацию и получить четкие оценки возможностей реализации каждого сценария [56, 48, 156].

Б. Нечеткий логический вывод о влиянии факторов на значения возможностей

Для нечеткого логического вывода о значениях лингвистической переменной предложена нечеткая база знаний, позволяющая связать значения возможностей \(P_i^l (i = 1(1)4) \) с факторами \(X_{<n>} = <X_1, X_2, ..., X_m> \), обусловливающими возникновение и развитие НшС:

ЕСЛИ \((X_1 = a_1^{i1}) \) И \((X_2 = a_2^{i2}) \) И \((X_3 = a_3^{i3}) \) И \((X_4 = a_4^{i4}) \) И \((X_5 = a_5^{i5}) \)

ИЛИ \((X_1 = a_1^{i2}) \) И \((X_2 = a_2^{i2}) \) И \((X_3 = a_3^{i2}) \) И \((X_4 = a_4^{i2}) \) И \((X_5 = a_5^{i2}) \) …

ИЛИ \((X_1 = a_1^{i{k_j}}) \) И \((X_2 = a_2^{i{k_j}}) \) И \((X_3 = a_3^{i{k_j}}) \) И \((X_4 = a_4^{i{k_j}}) \) И \((X_5 = a_5^{i{k_j}}) \),

ТО \(P_i^l = d_j, i = 1(1)4, j = 1(1)m, \) \(\tag{3.26} \)

где \(a_i^{i{k_j}} \) – значение (нечеткий терм), которым оценивается фактор \(X_i \) в строке с номером \(jl, l = 1(1)k_j \);

\(k_j \) – количество строк-конъюнкций, в которых фактор \(X_i \) оценивается значением \(a_i^{i{k_j}} \);

\(m \) – количество значений (термов), используемых для оценки выходного фактора \(X_i \).

Как показывает анализ, факторы, влияющие на значения лингвистической переменной \(P_i^l (i = 1(1)4) \), могут быть разбиты на 5 групп:

- показания средств измерений, их точность и достоверность (\(X_1 \));
- внешние проявления НшС и их анализ с точки зрения возникновения аварийной ситуации (x_2);

- схемный анализ, в том числе оценка возможности изолирования проблемного участка схемы, учет особенностей конструкции при отказе или нештатной работе отдельных элементов (x_4);

- оставшаяся неопределенность в оценке НшС, которая принципиально не может быть снята, и ее влияние на сценарий развития НшС (x_3);

- приоритет выполнения целевой задачи (x_5).

Значения факторов оцениваются по бинарной шкале: если заданное проявление фактора соответствует установленным требованиям или не влияет на выполнение целевой задачи, то значение фактора равно 1, в противном случае оно равно 0. Так, возможность аварии ($B(b_1)$) пренебрежимо мала, ЕСЛИ:

1) класс точности СИ позволяет точно оценить значение параметров, ни один из контролируемых параметров не находится в пределах, в которых возможно развитие аварии ($x_1=1$) И

2) отсутствуют внешние проявления, свидетельствующие о серьезности ситуации ($x_2=1$) И

3) схемный анализ показал, что из ситуации можно выйти, либо заменив отказавший элемент, либо обойдя проблемный участок ($x_3=1$) И

4) отсутствует неопределенность в определении состояния оборудования ($x_4=1$) И;

5) приоритет выполнения задачи невысокий (нет возможности отмены или переноса выполнения задачи) ($x_5=1$); ИЛИ

1) класс точности СИ позволяет точно оценить значение параметров, ни один из контролируемых параметров не находится в пределах, в которых возможно развитие аварии ($x_1=1$) И
2) отсутствуют внешние проявления, свидетельствующие о серьезности ситуации \((x_2 = 1) \) И

3) схемный анализ показал, что из ситуации можно выйти, либо заменив отказавший элемент, либо обойдя проблемный участок \((x_3 = 1) \) И

4) отсутствует неопределенность в определении состояния оборудования \((x_4 = 1) \) И

5) приоритет выполнения задачи высокий (есть возможность отмены или переноса задачи или очень важно сохранить целостность комплекса) \((x_5 = 0) \) и т.д.

Результаты нечетких логических выводов сведены в таблицу 3.2.

Таблица 3.2 – Результаты нечетких логических выводов

<table>
<thead>
<tr>
<th>№</th>
<th>(X_1)</th>
<th>(X_2)</th>
<th>(X_3)</th>
<th>(X_4)</th>
<th>(X_5)</th>
<th>(B(b_1))</th>
<th>(B(b_2))</th>
<th>(B(b_3))</th>
<th>(B(b_4))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>ОБ</td>
<td>С</td>
<td>М</td>
<td>ПМ</td>
</tr>
<tr>
<td>2.</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>ОБ</td>
<td>Б</td>
<td>М</td>
<td>ПМ</td>
</tr>
<tr>
<td>3.</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Б</td>
<td>С</td>
<td>С</td>
<td>ПМ</td>
</tr>
<tr>
<td>4.</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>С</td>
<td>С</td>
<td>Б</td>
<td>ПМ</td>
</tr>
<tr>
<td>5.</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>С</td>
<td>Б</td>
<td>С</td>
<td>ПМ</td>
</tr>
<tr>
<td>6.</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>С</td>
<td>С</td>
<td>С</td>
<td>ПМ</td>
</tr>
<tr>
<td>7.</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Б</td>
<td>Б</td>
<td>С</td>
<td>ПМ</td>
</tr>
<tr>
<td>8.</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>С</td>
<td>Б</td>
<td>С</td>
<td>ПМ</td>
</tr>
<tr>
<td>9.</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>Б</td>
<td>С</td>
<td>М</td>
<td>ПМ</td>
</tr>
<tr>
<td>10.</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>С</td>
<td>Б</td>
<td>С</td>
<td>ПМ</td>
</tr>
<tr>
<td>11.</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>С</td>
<td>С</td>
<td>Б</td>
<td>М</td>
</tr>
<tr>
<td>12.</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Б</td>
<td>С</td>
<td>С</td>
<td>ПМ</td>
</tr>
<tr>
<td>13.</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>С</td>
<td>Б</td>
<td>Б</td>
<td>М</td>
</tr>
<tr>
<td>14.</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>С</td>
<td>С</td>
<td>Б</td>
<td>М</td>
</tr>
<tr>
<td>15.</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>М</td>
<td>С</td>
<td>Б</td>
<td>М</td>
</tr>
<tr>
<td>16.</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>М</td>
<td>С</td>
<td>С</td>
<td>ПМ</td>
</tr>
<tr>
<td>17.</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>М</td>
<td>Б</td>
<td>ОБ</td>
<td>М</td>
</tr>
<tr>
<td>18.</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>С</td>
<td>Б</td>
<td>ОБ</td>
<td>М</td>
</tr>
<tr>
<td>19.</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>С</td>
<td>Б</td>
<td>Б</td>
<td>М</td>
</tr>
<tr>
<td>20.</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>М</td>
<td>С</td>
<td>ОБ</td>
<td>М</td>
</tr>
<tr>
<td>21.</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>С</td>
<td>С</td>
<td>Б</td>
<td>М</td>
</tr>
<tr>
<td>22.</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>М</td>
<td>М</td>
<td>Б</td>
<td>М</td>
</tr>
<tr>
<td>23.</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>М</td>
<td>М</td>
<td>ОБ</td>
<td>М</td>
</tr>
<tr>
<td>24.</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>С</td>
<td>С</td>
<td>Б</td>
<td>М</td>
</tr>
<tr>
<td>25.</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>С</td>
<td>С</td>
<td>Б</td>
<td>М</td>
</tr>
</tbody>
</table>

В. Дефаззификация нечетких множеств и четкая оценка возможностей

Среди известных методов дефаззификации наиболее подходящим является способ нахождением абсциссы центра тяжести фигуры, ограниченной осями координат и графиком функции принадлежности нечеткого множества – по аналогии с определением математического ожидания случайной величины. Четкое значение \(o_i^n\) нечеткой лингвистической переменной \(P_i) (i = 1(1)4)\) находитя по формуле:

\[
p_i^o = \frac{\int p(x)dx}{\int p(x)dx}.
\]

(3.27)

Четкие значения \(p_i^o\) возможностей \(P_i) (i = 1(1)4)\) реализации сценариев развития НшС в соответствии с (3.24) и (3.25) равны:

\[
p_i^0 = "пренебрежимо \ малая" = \frac{P_{nм}^{max}}{3};
\]

\[
p_i^0 = "малая" = \frac{P_{м}^{max}}{3};
\]

\[
p_i^0 = "средняя" = \frac{P_{c}^{min} + P_{c}^{max}}{2};
\]

\[
p_i^0 = "большая" = \frac{1}{2} \frac{P_{m}^{max} + (P_{m}^{max})^3}{2 - P_{m}^{max} + (P_{m}^{max})^2};
\]
При четкой оценке возможностей p_i реализации каждого из сценариев развития НшС следует иметь в виду, что они составляют полную группу событий. Поэтому необходимо учесть условие нормировки (3.23) [48]:

$$ P_i = \frac{p_i^0}{\sum_{j=1}^{4} p_j^0}. $$

Эти возможности теперь можно использовать для расчета средних выигрышей при обосновании выбора стратегии ЛПР. Кроме того, они необходимы для обоснования критерия выбора решения по выходу из НшС.

3.4 Выбор и обоснование критерия принятия решений по выходу из нештатной ситуации

При возникновении НшС появляется задача выбора критерия выхода из НшС, который должен отражать предпочтения ЛПР при принятии им решения [104, 113, 158].

Выбор критерия обусловлен, во-первых, целевой установкой выхода из НшС, в том числе предпочтениями системы вышестоящего уровня, во-вторых, имеющейся информацией о состоянии объекта и возможных сценариях развития НшС.

Целевая установка выхода из НшС связана со следующими факторами:

- значимость ВЦЗ в установленные сроки и последствия ее невыполнения;

- сопоставимость потерь от невыполнения целевой задачи с ущербом от возможного происшествия (аварии). Как правило, такая информация поступает от системы вышестоящего уровня;

- временные задержки и дополнительные ресурсы, необходимые для ВЦЗ, их наличие и возможность использования;
- возможные последствия принятого решения, в частности, ущерб от происшествия (аварии);
- важность сохранения целостности объекта и необходимость предотвращения аварии.

Целевая установка предопределяет вид целевой функции, на основании которой осуществляется выбор решения.

Информация о состоянии объекта и возможных сценариях развития НшС позволяет более точно оценить возможные последствия принятого решения, в частности, насколько велик риск аварии при реализации этого решения.

Требования вышестоящей системы могут быть описаны в виде кортежа приоритетов \(P_{i}^{pr} \), \(i=1,2,..., l \), определяющих целевую установку ЛПР при принятии решения о выходе из НшС. При решении поставленной задачи целесообразно ограничиться трехкомпонентным кортежем приоритетов \(P_{i}^{pr} \):

- приоритет 1 \(P_{1} \) – высокая значимость ВЦЗ;
- приоритет 2 \(P_{2} \) – необходимость сохранения объекта (летательного аппарата);
- приоритет 3 \(P_{3} \) – необходимость сохранения инфраструктуры комплекса АРКТ.

Примем допущение, что вышестоящая система может назначать только один из приоритетов, т.е. приоритеты могут принимать значения 0 или 1 при соблюдении условия нормировки:

\[
P_{i} = \begin{cases}
1, & \text{если выбран,} \\
0, & \text{если не выбран,}
\end{cases} \quad i=1,2,3;
\]

\[
\sum_{i=1}^{3} P_{i} = 1.
\]

(3.30)

В зависимости от выбранного приоритета может изменяться допустимое значение возможности аварии \(P_{aw}^{dop} \) при принятии решения в соответствии с (3.30):

- для приоритета 1 \(P_{aw}^{dop} \) может достигать значения малая;
- для приоритетов 2 и 3 \(P_{aw}^{dop} \) может быть только пренебрежимо малой;
Целевая функция $w_i (i = 1, 2, ..., n)$, характеризующая результат принятого решения о выборе стратегии a_i, в общем случае имеет вид:

$$w_i = w_i(a_i; H_{[n,m]}, P_{d>,P_{a>}}, i = 1, 2, ..., n). \quad (3.31)$$

Критерий выбора решения должен обеспечивать наилучшее в каком-то смысле значение целевой функции:

$$a^* = \text{Arg extr} w_i^* (a_i; H_{[3,4]}, P_{d>,Pr_{d>}}). \quad (3.32)$$

Среди известных критериев, применяемых в теории игр [113, 158], наиболее подходящим для решения поставленной задачи является критерий Гурвица, поскольку он ориентирован на смешанные стратегии и не требует вычисления вероятностей реализации сценариев.

Определим условия его применения.

Критерий Гурвица целесообразно применять в тех случаях, когда системой вышестоящего уровня определен приоритет в целевой установке выхода из НшС. Задача сводится к поиску оптимального решения, обеспечивающего максимально возможный выигрыш с учетом заданного приоритета.

При использовании критерия Гурвица вводится некоторый коэффициент α, называемый коэффициентом оптимизма, $0 \leq \alpha \leq 1$, который трактуется как возможность благоприятного выхода из НшС. Чем более опасна ситуация, тем меньше значение принимает коэффициент оптимизма α.

В зависимости от условий проведения конкретного процесса благоприятными исходами могут быть признаны различные выходы из НшС:

А) необходимость ВЦЗ очень высока и ее перенос невозможен. Возможность положительного исхода равна p_1 и, соответственно, $\mu_d = \mu_1(x)$;

Б) в случае допустимости переноса ВЦЗ возможность положительного исхода будет равна $p_1 + p_2$. Для оценивания функции принадлежности необходимо выполнить операцию объединения нечетких множеств:

$$\mu_B = \max \{\mu_1(x), \mu_2(x)\} \quad (3.33)$$
В) если же на первом плане не ВЦЗ, а предотвращение аварии, то возможность благоприятного исхода равна \(p_1 + p_2 + p_3 \), а функция принадлежности по аналогии с (3.32) \(\mu_B = \max \{ \mu_1(x), \mu_2(x), \mu_3(x) \} \).

Чтобы вычислить коэффициент оптимизма, необходимо провести объединение нечетких множеств, характеризующих благоприятные исходы.

Для трех вышеприведенных благоприятных исходов коэффициент \(\alpha \) равен соответственно: \(\alpha_A = p_1, \alpha_B = p_1 + p_2, \alpha_C = p_1 + p_2 + p_3 \).

Целевая функция критерия Гурвица вычисляется следующим образом. В каждой строке матрицы выигрышей \(H_{[n,m]} \) находят самое большое \(\max h_{ij} \) и самое маленькое \(\min h_{ij} \) значения выигрышей. Они умножаются соответственно на \(\alpha \) и \((1 - \alpha)\), а затем вычисляется их сумма.

\[
W_i(a_i) = \alpha \cdot \max_j h_{ij} + (1 - \alpha) \cdot \min h_{ij}, \quad j = 1(1)m, \quad i = 1(1)n. \tag{3.34}
\]

Оптимальным является решение, которому соответствует максимум этой суммы:

\[
a_i^* = \text{Arg} \max_{i=1(1)n} W_i^*(a_i). \tag{3.35}
\]

Рассмотрим, как ведет себя целевая функция критерия Гурвица при различных значениях \(\alpha \).

Предположим, что матрица выигрышей при выходе из НшС имеет вид, представленный в таблице 3.3.

Таблица 3.3 – Исходные данные для расчета

<table>
<thead>
<tr>
<th>(h_{ij})</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>70</td>
<td>-120</td>
<td>-250</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>50</td>
<td>-70</td>
<td>-180</td>
</tr>
<tr>
<td>3</td>
<td>-120</td>
<td>-130</td>
<td>-10</td>
<td>-10</td>
</tr>
</tbody>
</table>

Результаты расчетов значений целевой функции для различных стратегий ЛПР \(a_1, a_2 \) и \(a_3 \) в зависимости от \(P_{av} = 1 - \alpha \) сведем в таблицу 3.4.

График изменения целевой функции в зависимости от значения вероятности аварии \(P_{av} \) приведен на рисунке 3.12.
Таблица 3.4 – Результаты расчетов целевой функции

<table>
<thead>
<tr>
<th>Стратегия</th>
<th>Значения целевой функции</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
<td>100 65 30 -5 -40 -75 -110 -145 -180 -215 -250</td>
</tr>
<tr>
<td>a_2</td>
<td>50 27 4 -19 -42 -65 -88 -111 -134 -157 -180</td>
</tr>
<tr>
<td>a_3</td>
<td>-10 -22 -34 -46 -58 -70 -82 -94 -106 -118 -130</td>
</tr>
<tr>
<td>P_{av}</td>
<td>0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1</td>
</tr>
</tbody>
</table>

На графике хорошо видны области выбора стратегии a_1 (при значении вероятности P_{av} до 0,46), выбора стратегии a_2 (при значении вероятности P_{av} от 0,46 до 0,6), выбора стратегии a_3 (при значении вероятности P_{av} выше 0,6).

Таким образом, задача выбора критерия при принятии решений по выходу из НшС может быть сформулирована следующим образом.

Рисунок 3.12 – График изменения целевой функции в зависимости от P_{av} по критерию Гурвица
Пусть ЛПР выбирает один из n возможных вариантов своих решений $a_1, a_2, ..., a_n$ и пусть известны условия, в которых будут реализованы эти варианты – сценарии развития НшС, обусловленные состоянием объекта, т.е. $b_1, b_2, ..., b_m$. Оценки всех возможных сочетаний вариантов решения и условий их реализации (a_i, b_j) заданы в виде матрицы выигрышей ЛПР $H_{[n,m]}$ (3.4). Возможности реализации каждого сценария заданы вектором $P_{c_k} = \langle p_1, p_2, ..., p_4 \rangle$. Системой вышестоящего уровня заданы приоритеты выхода из нештатной ситуации Pr_{c_3}. Пусть, далее, задан перечень критериев выбора решения ЛПР.

Необходимо обосновать выбор критерия принятия решения о выходе из НшС.

Порядок решения этой задачи целесообразно представить в виде алгоритма.

3.5 Алгоритм принятия решения по выходу из нештатной ситуации

Перечислим основные этапы подготовки и принятия решения по выходу из НшС. Этот процесс является многошаговым, и количество шагов заранее неизвестно, но последовательность действий одинакова для всех шагов принятия решения.

1. Описание возможных стратегий выхода из НшС и оценка возможных результатов при реализации каждой стратегии a_1, a_2, a_3 с учетом их возможных сочетаний с различными сценариями развития НшС b_1, b_2, b_3.

2. Заполнение матрицы выигрышей $H_{[3,4]} = \begin{bmatrix} h_{11} & h_{12} & h_{13} & h_{14} \\ h_{21} & h_{22} & h_{23} & h_{24} \\ h_{31} & h_{32} & h_{33} & h_{34} \end{bmatrix}$.

3. Оценивание возможностей выбора ЛПР каждой стратегии (вектор P_{c_k}).

4. Оценивание допустимой возможности аварии, в том числе на основе приоритетов вышестоящей системы Pr_{c_3}.

5. Сравнение рассчитанной возможности P_4 с допустимым значением.

6. Обоснование выбора критерия принятия решения.
7. Принятие решения для 1-го шага.

8. Если реализация решения привела к выходу из НшС, процесс подготовки и принятия решения завершен. В противном случае, следует переходить ко 2-му шагу и возвратиться к п.1.

В общем виде алгоритм принятия решения по выходу из нештатной ситуации представлен на рисунке 3.13.

Полученные результаты являются основой научно-методического аппарата подготовки персонала к принятию решений в НшС.
Выводы по главе 3

1. Разработана модель развития НшС как последовательность принимаемых решений. Рассматриваемая непредвиденная НшС имеет внешние проявления, а выход из такой ситуации предполагает последовательность принимаемых решений.

2. Обосновано применение математического аппарата теории игр для определения стратегий поведения лица, принимающего решение по выходу из НшС. Процесс возникновения и развития НшС представлен в виде антагонистической игры с двумя участниками.

3. Проведен анализ возможных стратегий ЛПР по выходу из НшС с учетом различных сценариев ее развития.

4. Разработана модель оценивания последствий возможных решений по выходу из НшС.

5. На основе показаний средств измерений и допущений о влиянии этих показаний на возможности реализации различных сценариев развития НшС предложены модели расчета вероятностей выполнения и невыполнения целевой задачи в зависимости от класса точности средств измерений.

6. Разработаны модели расчета возможностей реализации различных сценариев развития НшС на основе теории нечетких множеств.

7. Проведен анализ критериев принятия решений по выходу из НшС, обоснован выбор критерия Гурвица, применение которого позволяет адекватно решать поставленную задачу.

8. Предложена алгоритмическая модель принятия решения по выходу из НшС, представляющая собой последовательность действий на каждом шаге принятия решения, причем количество шагов заранее неизвестно.
ГЛАВА 4. РАЗРАБОТКА МЕТОДИКИ ИСПОЛЬЗОВАНИЯ КАОС И ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ ПО ОЦЕНИВАНИЮ ВЛИЯНИЯ КАОС НА УРОВЕНЬ ПОДГОТОВКИ НАЗЕМНОГО ПЕРСОНАЛА АРКТ

4.1 Разработка методики использования КАОС для профессиональной подготовки (переподготовки, повышения квалификации) наземного персонала АРКТ

4.1.1 Общие положения

Задача повышения квалификации эксплуатирующего персонала (научения ЛПР), связанная с принятием обоснованных решений при возникновении непредвиденных НшС, характерных для эксплуатации конкретных комплексов АРКТ, представляется весьма актуальной.

Общая методика принятия решения при возникновении непредвиденных НшС описана в [113] и приведена в главе 3.

Поскольку НшС при эксплуатации возникают достаточно часто, одна из компетенций эксплуатирующего персонала, в частности, лиц, принимающих решения (ЛПР), связана с действиями при возникновении таких ситуаций. Первичные навыки и умения действий при возникновении НшС могут быть сформированы у персонала при получении высшего профессионального образования на основе Концепции эксплуатационной направленности образовательного процесса подготовки специалистов по эксплуатации комплексов космических средств, разработанной в Военно-космической академии имени А.Ф. Можайского [65]. Реализация Концепции предполагает несколько этапов, или блоков обучения [151, 152], приведенных в п. 2.5.2:

– этап 1 – получение теоретических знаний о конструкции образца АРКТ и принципах его функционирования;
– этап 2 – изучение технологии эксплуатации комплекса АРКТ;
– этап 3 – формирование умений и навыков индивидуального выполнения типовых технологических операций и эксплуатационных процессов;
– этап 4 – приобретение навыков практической работы в составе расчета;
– этап 5 – приобретение компетенций по принятию решений по выходу из непредвиденных НшС.

Решение задач пятого этапа предполагает наличие знаний, умений и навыков, полученных на первых четырех этапах, поскольку это является необходимым условием принятия решения, в ходе которого могут понадобиться сведения об особенностях конструкции объекта, побочных явлениях, средствах контроля параметров и их характеристиках, возможности получения информации нештатными средствами и т.д.

4.1.2 Показатели обученности

Показатели, характеризующие уровень (качество) обученности, должны учитывать не только конечный результат обучения (обобщенный показатель), но и частные, промежуточные результаты, которые будут характеризовать отдельные аспекты подготовки и принятия решения по выходу из НшС.

В качестве общего показателя уровня обученности предложено использовать балльную оценку, выставленную преподавателем.

В качестве частных показателей уровня обученности целесообразно использовать следующие:
- количество учтенных при принятии решения факторов (в % от максимально возможного, заложенного в обучающей программе);
- количество возможных вариантов развития НшС, рассматриваемых каждым обучающимся;
- точность (правильность) оценивания риска (возможности возникновения аварии) каждым обучающимся по результатам анализа исходной информации;
- время на подготовку принятия решения и его соответствие установленным требованиям.
По мере накопления опыта номенклатура показателей обученности может корректироваться и уточняться.

4.1.3 Дифференциация обучаемых и рекомендации по построению индивидуальной траектории обучения

Изначально, на 1 этапе, все обучаемые участвуют в процессе обучения на общих основаниях (формально перед началом обучения они имеют равные показатели, например диплом о высшем образовании). Программа обучения, объем учебного материала, критерии оценок – одинаковы для всех обучаемых.

По завершении 1 этапа обучаемые подвергаются первому зачетному тестированию, в результате которого они показывают различные результаты: одни – по оценке ПАП (см. рисунок 2.6) достигают минимально допустимого уровня обученности и допускаются к следующему этапу обучения, другие – не достигают и идут «на повторный круг». Рисунок 4.1 иллюстрирует это.

Далее для каждого обучаемого, не допущенного к следующему этапу обучения преподавателем строится ИОТ. При этом (см. рисунки 2.18 и 4.1):
- определяются наиболее значимые факторы моделируемого сценария обучения – вершины орграфа;
- выявляются взаимосвязи между этими факторами с отображением их в виде ребер (дуг) орграфа;
- назначаются численные диапазоны весов дуг орграфа a_k (к = 1,2,...,15) в интервале [0,1] на основе эвристических соображений о степени взаимного влияния факторов автоматизированного обучения друг на друга.

Таким образом, задаются индивидуальные регулирующие параметры (корректирующие воздействия) на Π, УМ, УС, З. Процесс обучения повторяется с постоянным контролем УП посредством тестирования с применением ПАП с постоянным корректированием (при необходимости) регулирующих воздействий на обучаемого.
Итогом должно явиться достижение обучаемым минимально допустимого уровня \textit{УП}, который позволит ему быть допущенным к следующему этапу обучения (рисунок 4.1). Перед каждым последующим этапом должна быть построена ИОТ с учетом показанных результатов и особенностей обучаемого на предыдущих этапах и т.д.

Рисунок 4.1 – Поэтапное возрастание уровня подготовленности обучаемого

По окончании всего курса обучения, помимо решения о профессиональной пригодности (непригодности) обучаемого и его допуске (недопуске) к самостоятельной работе (подтверждении или повышении уровня квалификации) может быть также сделан вывод о перспективах наилучшего (наиболее предпочтительного) варианта использования специалиста, прошедшего обучение на КАОС.
4.1.4 Рекомендации по реализации 5-го этапа обучения

Представляется целесообразным, с учетом ограниченности времени образовательного процесса, предусмотреть для каждого обучающегося не менее двух НшС: первая — для обучения, вторая — для контроля усвоения учебного материала, связанного с обоснованием решения по выходу из нерасчетных НшС. При этом в ходе работы над первой НшС обучающийся последовательно обосновывает принятые им решения, а по завершении ему указывают, сколько ошибок было им допущено на каждом этапе принятия решения. После проведенного обучающимся анализа он повторно решает задачу и так далее, вплоть до получения правильного ответа (который знает преподаватель). После проведенного совместно с преподавателем разбора ошибок обучающийся получает контрольное задание (вторую нештатную ситуацию).

Представленная методика реализуется с помощью КАОС и учитывает иерархию ЛПР и уровень их полномочий при принятии решений, что нашло отражение в базах данных и в модуле моделирования КАОС.

4.2 Ретроспективный анализ действий персонала в нештатной ситуации на основе разработанного научно-методического аппарата

В 1972 г. на космодроме Плесецк произошла катастрофа при подготовке к пуску ракеты-носителя (РН) «Космос 3М» [36, 137]. Описание последовательности принятых решений при возникновении НшС в процессе заправки баков РН компонентами топлива, приведших в конечном итоге к катастрофе, и их анализ на основе разработанного научно-методического обеспечения позволяет, во-первых, определить, когда были приняты неверные решения, во-вторых, показать, как следовало использовать имеющуюся информацию, в-третьих, проиллюстрировать функционирование разработанного научно-методического обеспечения по выходу из НшС.
Череда неправильно принятых технических и организационных решений привела к взрыву РН на стартовом комплексе и гибели эксплуатирующего персонала. Схематически развитие ситуации показано на рисунке 4.2. Число 1 в голубом овале обозначает инициирующее событие. Далее в обозначениях первый символ (число) – этап принятия решения; второй символ – выбранная ЛПР стратегия: Р – пуск РН в установленный срок (стратегия a1); П – перенос пуска РН (стрategия a2); О – отмена пуска РН (стратегия a3); третий символ – стратегия ФИ (развитие НшС, обусловливающее то решение, которое должно было приниматься), К – катастрофа. Синий цвет обозначает все решения, направленные на реализацию стратегии a1, зеленый – на реализацию стратегии a2, желтый – на реализацию стратегии a3, красный цвет обозначает катастрофу.

Построим дерево развития НшС и охарактеризуем действия ЛПР по выходу из НшС.

1 – инициирующее событие: отсутствие сигнала о завершении заправки бака горючего 1-й ступени (бака Г-1) в установленное время. Предполагаемой причиной признан отказ бортового сигнализатора наполнения (поплавкового датчика) в баке Г-1.

Далее рассмотрим развитие событий, обусловленных принимаемыми решениями, а также проанализируем те решения, которые следовало принимать на основе имевшейся информации.

4.2.1 Последовательность решений, приведших к катастрофе

1-1Р – решение о прекращении заправки Г и использовании наземных средств измерений (СИ) - уровнемеров и сигнализаторов расхода.

1Р – наземные СИ показали недозаправку 4000 литров горючего в баке Г-1. Это значение было признано достоверным, что не соответствовало действительности вследствие низкого класса точности этих СИ. Определим, как следовало трактовать информацию о недозаправке бака Г-1.
Измеренный наземными СИ объем заправленного горючего в бак Г-1 составляет $V_{изм} = 25500$ л, требуемый объем $V_{тр} = 29500$ л, максимальный объем горючего в баке (с учетом особенностей конструкции бака Г-1, в частности, наличии дренажной трубы, которая могла быть залита при превышении допустимого уровня компонента) составляет $V_{макс} = 31500$ л.

Класс точности уровнемеров (сигнализаторов расхода) определен по относительной погрешности и равен $K_p = 16$. В соответствии с (3.16) истинное значение измеренного объема $V_{изм}$ величины лежит в следующих пределах:

$$V_i = \frac{V_{изм}}{1 + 0,01\delta} \leq \hat{V}_{изм} \leq \frac{V_{изм}}{1 - 0,01\delta} = V_2,$$

или $21980 \leq \hat{V}_{изм} \leq 30360$.

Тогда вероятность того, что недозаправка бака Г-1 составляет не менее 4000 л равна:
Такое значение вероятности является достаточно веским доводом против принятия решения о дозаправке бака Г-1 на 4000 л. Кроме того, значительный разброс возможных значений \(V_{\text{изм}} \) свидетельствует о крайне низкой точности измерений.

1Р-2Р1 – решение (неверное) о дозаправке бака Г-1 до появления сигнала «Внимание-1».

2Р1 – в процессе дозаправки бака Г-1 при промежуточном значении количества дозаправленного компонента 2000 литров появилась течь горючего через дренажно-предохранительный клапан (ДПК) и дренажную магистраль в систему сжигания промстоков. Это свидетельствовало о том, что бак Г-1 переполнен, и горючее попало в дренажную трубу. При этом сигнализатор наполнения бака Г-1 сигнал «Внимание-1» не выдал, что свидетельствовало об отказе сигнализатора. В дренажной трубе горючего бака Г-1 и ДПК образовался гидрозатвор и отсутствует возможность сообщения бака Г-1 с атмосферой, что при сливе компонента приводит к смятию бака.

2Р1-3Р1 – решение (неверное) о частичном сливе горючего из бака Г-1. При этом не учитывалась возможность заливки дренажной магистрали горючим и наличия гидрозатвора.

3Р1 – в процессе частичного слива горючего из бака Г-1 произошло восстановление работы сигнализатора наполнения бака Г-1, что позволило точно контролировать объем заправляемого горючего. Однако во время слива по причине отсутствия сообщения с внешней атмосферой через дренажную трубу в баке Г-1 снизилось давление, что привело к смятию бака Г-1, появлению негерметичности и течи горючего по корпусу РН. Это аварийная ситуация, но ЛПР о ней не знает.

При появлении информации о течи горючего через ДПК (при реализации решения 1Р-2Р1) следовало выбирать стратегию \(a_3 \), (отмена пуска, снятие РН с
пускового устройства (ПУ)), поскольку наличие течи компонентов существенно повышает вероятность аварии, и принимать решение 2Р1-3РО – решение о сливе горючего из бака Г-1 с принудительным наддувом через магистраль предстартового наддува. Такое решение учитывает возможную заливку дренажной трубы бака Г-1.

3РО – слив горючего завершен, бак Г-1 РН полностью опорожнен, герметичен, пуск отменен, РН снята с ПУ.

3Р1-4Р1 – решение на заправку бака Г-1 до расчетного уровня.

4Р1 – бак Г-1 заправлен до расчетного уровня. Течь горючего из бака продолжается, но ее никто не видит, поскольку РН находится в башне обслуживания (БО). До пуска 34 минуты.

С учетом возможности повреждения бака Г-1 в ситуации 3Р1 следовало выбирать стратегию a_3 и принимать решение 3Р1-4РО – решение на отмену пуска и завершение слива горючего по штатной схеме с постоянным орошением РН водой в процессе слива.

4РО – слив горючего из бака Г-1 завершен, бак смят, пуск отменен, РН снята с ПУ.

4Р1-5Р1 – решение на отвод БО.

5Р1 – БО отведена, РН готова к набору стартовой готовности и пуску.

С учетом возможности повреждения бака Г-1 в ситуации 4Р1 следовало выбирать стратегию a_3 на основе визуальной информации о наличии подтеков жидкости в районе БО и принимать решение 4Р1-5РО – решение на отмену пуска и завершение слива горючего по штатной схеме с постоянным орошением РН водой.

5РО – слив бака Г-1 завершен, бак смят, пуск отменен, РН снята с ПУ.

5Р1-6Р1 – решение на проведение набора стартовой готовности и пуск РН.

6Р1 – проведение предстартового наддува бака Г-1. Наддув не осуществлен, визуально наблюдаемое парение в районе хвостового отсека РН, механический скрежет, падение давления в баке Г-1 ниже допустимого. Автоматический отбой
пуска за 15 сек., визуально наблюдаемые проливы горючего на корпусе РН и в районе ПУ. Стало ясно, что от стратегий \(a_1 \) и \(a_2 \) следует отказаться и необходимо реализовывать стратегию \(a_3 \).

С учетом возможности повреждения бака Г-1 в ситуации 5P1 следовало выбирать стратегию \(a_3 \), на основе визуальной информации о наличии парения и подтеков жидкости в районе ПУ и принимать решение 5P1-6PO – решение на отмену пуска и завершение слива горючего по штатной схеме с постоянным орошением РН водой.

6PO – слив бака Г-1 завершен, бак снят, пуск отменен, РН снята с ПУ.

6P1-7PO1 – решение на приведение схемы пуска в исходное состояние, снятие напряжения с бортовых систем, подвод к РН БО, осмотр РН и ПУ.

7PO1 – оборудование обесточено, приведено в исходное состояние. БО подведена. Проведен визуальный осмотр: выявлены течи горючего вдоль корпуса РН и проливы горючего вокруг РН на ПУ.

С учетом установленного факта нарушения герметичности бака Г-1, высокой степени опасности для персонала в ситуации 6P1 следовало принимать решение 6P1-7PO2 – решение о приведении схемы пуска в исходное состояние, снятии напряжения с систем, нейтрализации проливов горючего, постоянном орошении РН водой, сливе горючего из бака Г-1 по нештатной схеме, подводе БО, сборке схемы слива компонентов из остальных баков РН и их сливе и снятии РН с ПУ.

7PO2 – пуск отменен, после нейтрализации проливов горючего слива горючего из бака Г-1 по нештатной схеме; после этого слив компонентов из других баков по штатной схеме, снятие РН с ПУ.

7PO1-8PO1 – решение на проведение нейтрализации проливов горючего на ПУ, проветривание БО от паров горючего.

8PO1 – проливы горючего на ПУ нейтрализованы, створки БО открыты. Однако, как показало дальнейшее развитие событий, меры по снижению концентрации паров горючего оказались недостаточными.
С учетом установленного факта пролива компонента, высокой степени опасности для персонала в ситуации 7РО1 следовало принимать решение 7РО1-8РО2: замер загазованности в районе РН, отвод БО от РН, постоянное орошение РКН из пожарного автомобиля (системы пожаротушения и т.д.), проведение слива горючего через переносной комплект шлангов, герметизация горловин наполнительных соединений, исключение возможности пролива окислителя, повышенные меры безопасности.

8РО2 – загазованность в норме, произведен слив компонентов топлива при постоянном орошении РН водой, БО от РН отведена, заправочные коммуникации загерметизированы.

8РО1 – 9РК – решение на слив компонентов топлива из РН при несостоявшемся пуске по штатной схеме: сначала окислитель, затем горючее. Сборка схемы слива О, которая осуществляется расчетом непосредственно на поврежденной РН.

9РК – соединение остатков окислителя из-под заглушки наполнительного соединения с парами и проливами горючего. Взрыв, пожар, гибель людей, находившихся вблизи РН, потеря РН, разрушения стартового комплекса – катастрофа.

4.2.2 Последовательность решений, которая могла бы привести к выполнению целевой задачи в установленное время

1Р-2Р2 – решение на слив горючего по штатной схеме с одновременным контролем уровня горючего в хранилище системы заправки наземными СИ.

2Р2 – завершение слив горючего, бак Г-1 РН полностью опорожнен, уровень горючего в наземных хранилищах соответствует исходному.

2Р2-3Р2 – решение на повторную заправку бака Г-1 РН до расчетного уровня с одновременным контролем уровня горючего в хранилище системы заправки наземными СИ.
3Р2 – бак Г-1 РН заправлен до расчетного уровня, поплавковый сигнализатор уровня заправки отработал штатно (он должен был восстановиться в процессе слива горючего).

3Р2-4Р2 – решение на продолжение работ, заключительные операции и пуск РН в установленное время.

4Р2 – пуск РКН в установленное время.

2Р2-3РО2 – решение на отмену пуска, если сигнализатор уровня заправки не восстановился.

4РО2 - слив компонентов топлива из баков завершен, пуск отменен, РН снята с ПУ.

4.2.3 Последовательность решений, которая могла бы привести к переносу пуска

1-1П – решение о прекращении заправки горючего и использовании наземных СИ (уровнемеров и сигнализаторов расхода);

1П – наземные СИ показали недозаправку 4000 литров горючего. Из-за высокой погрешности СИ информация является недостоверной.

1П – 2П – решение о приостановке работ и переносе пуска, тщательный анализ НшС.

2П – установлена и устранена причина НшС, определено время пуска РН.

2П - 3ПР – подготовка к пуску РН по штатной схеме.

3ПР – РН заправлена до расчетного уровня, оборудование отработало штатно.

3ПР-4ПР – решение о пуске РН.

4ПР – пуск РН в резервное время.
4.2.4 Последовательность решений, которая могла бы привести к отмене пуска

1-1О – решение о прекращении заправки горючего и использовании наземных средств контроля (уровнемеров и сигнализаторов расхода);

1О – наземные средства контроля показали недозаправку 4000 литров горючего. Из-за высокой погрешности СИ информация признана недостоверной.

1О-2О – решение на отмену пуска, снятие РН с ПУ.

2О – пуск отменен, РН снята с ПУ.

Как следует из приведенного анализ, практически на всех этапах развития ситуации была возможность избежать катастрофы. Для этого следовало использовать информацию о классе точности средств измерения, визуальную информацию об обстановке на пусковом устройстве и адекватно оценивать степень опасности при планировании действий на каждом шаге.

4.3 Основные исходные положения экспериментальных исследований

Цель экспериментальных исследований – подтверждение преимуществ предлагаемой КАОС перед традиционными способами обучения и проверка значимости влияния фактора использования КАОС для обучения персонала принятию решений по выходу из НшС на основе статистической обработки результатов наблюдений.

В качестве обобщенного показателя уровня обученности использован средний балл учебной группы (на основе балльных оценок, выставленных преподавателем).

Частными показателями уровня обученности являются:
- количество учтенных при принятии решения факторов M (в % от заложенного в КАОС);
- количество возможных вариантов развития НшС L, рассматриваемое каждым обучаемым;
- бинарная оценка риска возникновения аварии OR каждым обучаемым по результатам анализа исходной информации;
- время t_n на подготовку принятия решения и его соответствие установленным требованиям (если такие требования предъявлены).

Первые два частных показателя (M и L) характеризуют знания обучаемого в области эксплуатации оборудования при штатном и нештатном функционировании, а также его способность к анализу имеющейся информации и ее использованию при оценке риска.

Показатель OR характеризует способность каждого обучаемого обобщать исходную информацию и делать выводы по результатам ее анализа. Этот показатель может принимать два значения:

$$ OR = \begin{cases}
1, & \text{если оценка сделана правильно}, \\
0, & \text{если оценка сделана неправильно}.
\end{cases} $$ (4.1)

При последующем анализе действий каждого обучаемого значения этого показателя помогут определить, чем был обусловлен его необоснованный оптимизм (пessimизм) при оценивании риска аварии.

Показатель t_n целесообразно использовать в том случае, когда ко времени подготовки принятия решения можно предъявить обоснованные требования, связанные с ограничением продолжительности выхода из НшС, и проверить их выполнение. Но при этом необходимо иметь в виду, что использование этого показателя не должно влиять на правильность принимаемого решения. В процессе обучения использование этого показателя целесообразно после того, как обучаемые приобретут навыки принятия решения по разработанной методике.

4.4 Порядок проведения эксперимента

В эксперименте были сформированы две учебные группы из числа вновь прибывших специалистов. Обучаемые распределялись по группам таким образом, чтобы средний уровень подготовленности (средний балл диплома) до начала эксперимента в обеих группах был примерно одинаков. Первая группа решала
задачи выхода из НшС, имея в своем распоряжении только полный комплект эксплуатационной документации (ЭД) на оборудование, вторая группа прошла подготовку на КАОС и помимо ЭД имела доступ к подсистеме поддержки принятия решения и всем информационным ресурсам КАОС.

Обработка результатов эксперимента проводилась на основе аппарата математической статистики. Целью эксперимента было подтверждение гипотезы о том, что при использовании КАОС средний уровень обученности будет выше, чем при использовании традиционных методик (только штатной ЭД).

Эксперимент проводился в конце периода обучения, непосредственно перед итоговыми испытаниями. Каждому обучаемому была задана одна и та же исходная информация. В процессе работы контакты между обучаемыми были исключены. В результате каждый обучаемый обосновал свое решение по выходу из НшС. В ходе решения задачи каждый обучаемый указал, какое количество исходных данных было им использовано, исходное рассматриваемое количество вариантов развития НшС, обосновал значение риска аварии. С учетом фиксирования затраченного каждым обучаемым времени были получены промежуточные показатели – \(OR, t_n, M \) и \(L \).

Пример исходных данных для одной из серий экспериментальных исследований (первая группа – численностью 11 человек, вторая группа – численностью 13 человек) представлен в таблицах 4.1 – 4.5. Во втором столбце каждой таблицы находятся результаты обучаемых первой учебной группы, в третьем - второй учебной группы.

В таблице 4.1 приведены оценки каждого обучаемого, выставленные преподавателем. Они отражают интегральную оценку уровня обучаемых.

Таблица 4.1 – Результаты оценивания преподавателем каждого обучаемого

<table>
<thead>
<tr>
<th>№ п.п.</th>
<th>Оценки обучаемых первой группы</th>
<th>Оценки обучаемых второй группы</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>
В таблицах 4.2 – 4.5 приведены результаты каждого обучаемого по приведенным выше частным показателям:

- количество учтенных при принятии решения факторов \(M \) (таблица 4.2);
- количество вариантов развития НшС \(L \), рассмотренных каждым обучающимся (таблица 4.3);
- бинарная оценка риска возникновения аварии \(OR \) каждым обучающимся (таблица 4.4);
- время \(t_n \) на подготовку принятия решения (таблица 4.5).

Таблица 4.2 – Количество факторов, учтенных каждым обучающимся при принятии решения

<table>
<thead>
<tr>
<th>№ п.п.</th>
<th>Количество факторов, учтенных обучающимся первой группы</th>
<th>Количество факторов, учтенных обучающимися второй группой</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>40</td>
<td>70</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>7</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>30</td>
<td>80</td>
</tr>
<tr>
<td>9</td>
<td>20</td>
<td>40</td>
</tr>
<tr>
<td>10</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>11</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>12</td>
<td>-</td>
<td>40</td>
</tr>
<tr>
<td>13</td>
<td>-</td>
<td>30</td>
</tr>
</tbody>
</table>
Таблица 4.3 – Количество вариантов развития НшС, рассмотренных каждым обучаемым

<table>
<thead>
<tr>
<th>№ п.п.</th>
<th>Количество вариантов развития НшС, рассмотренных обучаемыми первой группы</th>
<th>Количество вариантов развития НшС, рассмотренных обучаемыми второй группы</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>13</td>
<td>-</td>
<td>3</td>
</tr>
</tbody>
</table>

Таблица 4.4 – Бинарная оценка риска возникновения аварии по результатам анализа исходной информации, сделанная каждым обучаемым

<table>
<thead>
<tr>
<th>№ п.п.</th>
<th>Бинарная оценка риска, сделанная обучаемыми первой группы</th>
<th>Бинарная оценка риска, сделанная обучаемыми второй группы</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>
Таблица 4.5 – Время, затраченное на подготовку и принятие решения по выходу из НшС каждым обучающимся (мин)

<table>
<thead>
<tr>
<th>№ п.п.</th>
<th>Время обучающихся первой группы</th>
<th>Время обучающихся второй группы</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40</td>
<td>44</td>
</tr>
<tr>
<td>2</td>
<td>55</td>
<td>53</td>
</tr>
<tr>
<td>3</td>
<td>38</td>
<td>46</td>
</tr>
<tr>
<td>4</td>
<td>42</td>
<td>55</td>
</tr>
<tr>
<td>5</td>
<td>52</td>
<td>41</td>
</tr>
<tr>
<td>6</td>
<td>62</td>
<td>58</td>
</tr>
<tr>
<td>7</td>
<td>54</td>
<td>57</td>
</tr>
<tr>
<td>8</td>
<td>49</td>
<td>42</td>
</tr>
<tr>
<td>9</td>
<td>39</td>
<td>47</td>
</tr>
<tr>
<td>10</td>
<td>43</td>
<td>44</td>
</tr>
<tr>
<td>11</td>
<td>49</td>
<td>39</td>
</tr>
<tr>
<td>12</td>
<td>-</td>
<td>48</td>
</tr>
<tr>
<td>13</td>
<td>-</td>
<td>57</td>
</tr>
</tbody>
</table>

4.5 Порядок обработки результатов эксперимента

Обработка результатов эксперимента проводилась на основе аппарата математической статистики [124].

В ходе обработки результатов эксперимента требовалось определить, по каким показателям результаты, показанные обучающими каждой из групп, отличаются статистически значимо. При этом сравнивались оценки средних показателей обучающих в каждой группе.

Обработка полученного статистического материала осуществлялась в соответствии с [124]. Последовательность действий приведена ниже:

1. Получение выборочных средних значений \(\bar{x} \) и дисперсий \(s^2 \) для каждой группы обучающих.

\[
\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i ,
\]

где \(n \) – объем выборки.
\[s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2 = \frac{1}{n-1} \left[\frac{\sum_{i=1}^{n} x_i^2}{n} - \left(\frac{\sum_{i=1}^{n} x_i}{n} \right)^2 \right]. \] (4.3)

2. Расчет дисперсий оценок выборочных средних значений \(s_x^2 \) для каждой группы обучаемых.

\[s_x^2 = \frac{s^2}{n}. \] (4.4)

3. Оценка значимости различия дисперсий \(s^2 \) для каждой группы обучаемых.

Значимость различия дисперсий проверяется по критерию Фишера.

Нулевая гипотеза (о равенстве дисперсий выборок) не отвергается, если

\[\frac{1}{F_{1-p/2}(f_1, f_2)} \leq s_1^2 \leq F_{1-p/2}(f_1, f_2), \] (4.5)

где \(F_{1-p/2}(f_1, f_2) \) – значение квантиля распределения Фишера при уровне значимости \(p/2 \) и числе степеней свободы \(f = n_1 + n_2 - 2 \). Здесь \(f_1 \) и \(f_2 \) – число степеней свободы для первой и второй выборок соответственно. В данном случае \(f_1 = n_1 - 1, f_2 = n_2 - 1 \).

Если нулевая гипотеза верна, то для проверки значимости гипотезы об одинаковости средних в обеих выборках можно использовать критерий Стьюдента.

4. Проверка значимости нулевой гипотезы об одинаковости средних.

Пусть \(\bar{x}_1 \) - выборочное среднее среднего балла обучаемых первой группы, \(\bar{x}_2 \) – выборочное среднее среднего балла обучаемых второй группы. Нулевая гипотеза отвергается, если для двустороннего критерия

\[|\bar{x}_1 - \bar{x}_2| \geq t_{1-p/2}(f) s_a \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}, \] (4.6)

для одностороннего критерия
Внешний вид управления отражает систему, где показатели являются

\[
|\bar{x}_1 - \bar{x}_2| \geq t_{1-p}(f) \sqrt{s^2 \frac{1}{n_1} + \frac{1}{n_2}}, \quad (4.7)
\]

\[
s^2 = \frac{(n_1-1)s_1^2 + (n_2-1)s_2^2}{n_1 + n_2 - 2}. \quad (4.8)
\]

Здесь \(s^2 \) – средневзвешенная дисперсия обеих выборок; \(t_{1-p}(f) \) – значения квантиля распределения Стьюдента при уровне значимости \(p/2 \) или \(p \) соответственно и числе степеней свободы \(f = n_1 + n_2 - 2 \).

5. Если условие (4.5) не выполняется, то нужно использовать дополнительный критерий. Для этого используются дисперсии оценок выборочных средних значений \(s^2 \) для каждой группы обучающихся, вычисленные по формуле (4.4):

\[
v_1 = s^2_{x_1} = \frac{s^2_1}{n_1}, \quad v_2 = s^2_{x_2} = \frac{s^2_2}{n_2}.
\]

Затем находятся квантили \(t \)-распределения: \(t_{1-p/2}(f_1) \) и \(t_{1-p/2}(f_2) \). Далее вычисляется величина показателя \(T \):

\[
T = \frac{v_1 t_{1-p/2}(f_1) + v_2 t_{1-p/2}(f_2)}{\sqrt{v_1 + v_2}}. \quad (4.9)
\]

Нулевая гипотеза (о равенстве выборочных средних каждой выборки) отклоняется, если

\[
|\bar{x}_1 - \bar{x}_2| > T. \quad (4.10)
\]

Далее можно сделать вывод о том, что применение методики обучения действиям в NhС существенно (статистически значимо) повышает уровень квалификации персонала, либо, наоборот, не оказывает на него значимого влияния.
4.6 Расчеты показателей обученности по результатам эксперимента

Проведем расчеты обобщенного и частных показателей обученности для каждой из групп обучаемых. Затем проверим значимость различия результатов, что позволит сделать вывод о действенности АОС при обучении персонала действиям по выходу из нештатных ситуаций.

4.6.1 Расчеты обобщенного показателя обученности

1. По формуле (4.2) рассчитывается средний балл. Он равен: для обучаемых первой группы $x_1 = 3,27$, для обучаемых второй группы $x_2 = 4,08$.

2. По формуле (4.3) рассчитываются дисперсии (разброс оценок каждого обучаемого вокруг выборочного среднего) для каждой группы:

$$s_1^2 = \frac{0,27^2 \cdot 5 + 0,73^2 \cdot 3 + 1,73^2 + 1,27^2 \cdot 2}{11 - 1} = \frac{8,18}{10} = 0,818;$$

$$s_2^2 = \frac{1,08^2 \cdot 2 + 0,08^2 \cdot 5 + 0,92^2 \cdot 5 + 2,08^2}{13 - 1} = \frac{10,92}{12} = 0,910.$$

3. По формуле (4.4) рассчитываются дисперсии оценок выборочных средних значений для каждой группы обучаемых:

$$s_{x_1}^2 = \frac{0,818}{11} = 0,074;$$

$$s_{x_2}^2 = \frac{0,910}{13} = 0,070.$$

4. По формуле (4.5) проверяется значимость нулевой гипотезы о равенстве дисперсий s_1^2 и s_2^2. При этом уровень значимости p выбиpаем равным $p = 0,05$.

Нулевая гипотеза (о равенстве дисперсий выборок) не отвергается, если

$$1 \leq \frac{0,818}{0,910} \leq F_{1-p/2}^{1 \cdot p/2} (n_2 - 1, n_1 - 1),$$

$$0,357 \leq 0,899 \leq 2,9.$$
Как видно, неравенство соблюдается, т.е. нулевая гипотеза верна. Поэтому для проверки гипотезы о равенстве средних для среднего балла обучающихся первой и второй групп можно использовать критерий Стьюдента.

5. Поскольку использование КАОС может только повышать уровень обученности, можно применять односторонний критерий. По формуле (4.7) проверяется значимость нулевой гипотезы об одинаковости средних x_1 и x_2.

По формуле (4.8) рассчитывается средневзвешенная дисперсия обеих выборок:

$$s^2 = \frac{(n_1-1)s_1^2 + (n_2-1)s_2^2}{n_1 + n_2 - 2} = \frac{10 \cdot 0,818 + 12 \cdot 0,910}{22} = 0,868; \quad s = 0,932.$$

Нулевая гипотеза отвергается, если для одностороннего критерия

$$|3,27 - 4,08| \geq t_{p}(n_1 + n_2 - 2) \cdot 0,932 \cdot \sqrt{\frac{1}{11} + \frac{1}{13}}, \quad \text{или} \quad 0,81 \geq 0,686.$$

Неравенство соблюдается, значит, нулевую гипотезу о равенстве выборочных средних для среднего балла обучающихся первой и второй групп следует отвергнуть. Это позволяет сделать вывод о том, что применение методики обучения действиям в НшС статистически значимо повышает уровень квалификации персонала.

4.6.2 Расчеты частных показателей обученности

а) расчеты количества учтенных при принятии решения факторов

1. По формуле (4.2) рассчитывается среднее количество учтенных при принятии решения факторов (в процентах от общего их числа, заложенного в модуле моделирования). Оно равно: для обучаемых первой группы $\bar{M}_1 = 25,45$, для обучаемых второй группы $\bar{M}_2 = 40,00$.

2. По формуле (4.3) рассчитываются дисперсии для каждой группы:

$$s^2_1 = \frac{5,45^2 \cdot 5 + 15,45^2 \cdot 2 + 4,55^2 \cdot 2 + 14,55^2 \cdot 2 + 24,55^2}{11 - 1} = \frac{1672,73}{10} = 162,72;$$
3. По формуле (4.4) рассчитываются дисперсии оценок выборочных средних значений для каждой группы обучающихся:

\[s^2_i = \frac{162.27}{11} = 14.75; \]

\[s^2_j = \frac{275.00}{13} = 21.15. \]

4. По формуле (4.5) проверяется значимость нулевой гипотезы о равенстве дисперсий \(s^2_1 \) и \(s^2_2 \). Уровень значимости прежний: \(p = 0.05 \).

Нулевая гипотеза (о равенстве дисперсий выборок) не отвергается, если

\[\frac{1}{F_{1-p/2}(n_2-1, n_1-1)} \leq \frac{162.27}{275.00} \leq F_{1-p/2}(n_1-1, n_2-1), \]

откуда

\[0.357 \leq 0.590 \leq 2.9. \]

Как видно, неравенство соблюдается, т.е. нулевая гипотеза верна. Поэтому для проверки гипотезы о равенстве средних можно использовать критерий Стьюдента.

5. Поскольку использование КАОС может только повышать количество учтенных факторов, можно применять односторонний критерий.

По формуле (4.8) рассчитывается средневзвешенная дисперсия обеих выборок:

\[s^2_a = \frac{(n_1-1)s^2_i + (n_2-1)s^2_j}{n_1 + n_2 - 2} = \frac{10 \cdot 162.27 + 12 \cdot 275.00}{22} = 226.00; \quad s_a = 15.03. \]

По формуле (4.7) проверяется значимость нулевой гипотезы об одинаковости средних \(\bar{M}_1 \) и \(\bar{M}_2 \). Нулевая гипотеза отвергается, если

\[|25.45 - 40.00| \geq t_{1-p}(n_1 + n_2 - 2) \cdot 15.03 \cdot \sqrt{\frac{1}{11} + \frac{1}{13}}, \]

или \(14.55 \geq 11.06. \)

Неравенство соблюдается, значит, нулевую гипотезу о равенстве выборочных средних для среднего количества учтенных при принятии решения факторов обучающимися первой и второй групп нужно отвергнуть. Применение
методики обучения действиям в НшС приводит к статистически значимому повышению количества учтенных факторов обучающимися.

б) расчеты количества возможных вариантов развития нештатной ситуации

1. По формуле (4.2) рассчитывается среднее количество вариантов развития НшС, рассматриваемое каждым обучаемым. Оно равно: для обучаемых первой группы $E_1 = 1,91$, для обучаемых второй группы $E_2 = 3,15$.

2. По формуле (4.3) рассчитывается дисперсия для каждой группы:

$$s_1 = \frac{0,09^2 - 4 + 1,09^2 - 4 + 2,09^2 - 3}{11 - 1} = 1,79;$$

$$s_2 = \frac{1,15^2 - 2 + 0,85^2 - 4 + 0,15^2 - 5 + 2,15^2 - 18,5^2}{13 - 1} = \frac{15,30}{12} = 1,27.$$

3. По формуле (4.4) рассчитывается дисперсия оценок выборочных средних значений для каждой группы обучаемых:

$$s_1^* = \frac{1,79}{11} = 0,163;$$

$$s_2^* = \frac{1,27}{13} = 0,098.$$

4. По формуле (4.5) проверяется значимость нулевой гипотезы о равенстве дисперсий s_1^2 и s_2^2. При этом уровень значимости p выбираем равным $p = 0,05$.

Нулевая гипотеза (о равенстве дисперсий выборок) не отвергается, если

$$\frac{1}{F_{1-p/2} (n_2 - 1, n_1 - 1)} \leq \frac{1,79}{1,27} \leq F_{1-p/2} (n_1 - 1, n_2 - 1),$$

$$0,357 \leq 1,41 \leq 2,9.$$

Неравенство соблюдается, значит, нулевая гипотеза верна. Поэтому для проверки гипотезы о равенстве средних для среднего количества вариантов развития нештатной ситуации, рассматриваемого обучающимся первой и второй групп, можно использовать критерий Стьюдента.
5. Поскольку использование КАОС может только повышать количество рассматриваемых вариантов развития нештатной ситуации, можно применять односторонний критерий.

По формуле (4.8) рассчитывается средневзвешенная дисперсия обеих выборок:

\[s^2_\alpha = \frac{(n_1-1)s^2_1 + (n_2-1)s^2_2}{n_1+n_2-2} = \frac{10 \cdot 1.79 + 12 \cdot 1.27}{22} = 1.51; \quad s_\alpha = 1.23. \]

По формуле (4.7) проверяется значимость нулевой гипотезы об одинаковости средних \(\bar{L}_1 \) и \(\bar{L}_2 \). Нулевая гипотеза отвергается, если

\[\left| 1.91 - 3.15 \right| = 1.24 \geq t_{1-\rho}(n_1 + n_2 - 2) \cdot 1.23 \cdot \sqrt{\frac{1}{11} + \frac{1}{13}} = 1.01. \]

Неравенство соблюдается, значит, нулевую гипотезу о равенстве выборочных средних для количества вариантов развития НшС, рассматриваемых обучающимися первой и второй групп следует отвергнуть. Применение методики обучения действиям в НшС статистически значимо влияет на количество вариантов развития НшС, рассматриваемых обучающими при принятии решения.

в) расчеты бинарной оценки риска аварии

1. По формуле (4.2) рассчитывается бинарная оценка риска \(OR \) каждым обучающимся по результатам анализа исходной информации. Она равна: для обучаемых первой группы \(OR_1 = 0.45 \), для обучаемых второй группы - \(OR_2 = 0.69 \).

2. По формуле (4.3) рассчитывются дисперсии для каждой группы:

\[s^2_1 = \frac{0.55^2 \cdot 5 + 0.45^2 \cdot 6}{11-1} = \frac{2.72}{10} = 0.272; \]

\[s^2_2 = \frac{0.69^2 \cdot 4 + 0.31^2 \cdot 9}{13-1} = \frac{2.77}{12} = 0.230. \]

3. По формуле (4.4) рассчитываются дисперсии оценок выборочных средних значений для каждой группы обучающихся:

\[s^2_{\bar{x}_1} = \frac{0.272}{11} = 0.025; \]
\[s_{x}^2 = \frac{0.230}{13} = 0.018. \]

4. По формуле (4.5) проверяется значимость нулевой гипотезы о равенстве дисперсий \(s_1^2 \) и \(s_2^2 \). Уровень значимости \(p = 0.05 \).

Нулевая гипотеза (о равенстве дисперсий выборок) не отвергается, если

\[\frac{1}{F_{1-p/2}(n_2-1, n_1-1)} \leq \frac{0.272}{0.230} \leq F_{1-p/2}(n_1-1, n_2-1), \]

\[0.357 \leq 1.18 \leq 2.9. \]

Неравенство соблюдается, т.е. нулевая гипотеза верна. Для проверки гипотезы о равенстве средних для бинарной оценки риска обучаемыми первой и второй групп можно использовать критерий Стьюдента.

5. Поскольку использование КАОС может только повышать уровень бинарной оценки риска, можно применять односторонний критерий.

По формуле (4.8) рассчитывается средневзвешенная дисперсия обеих выборок:

\[s^2 = \frac{(n_1-1)s_1^2 + (n_2-1)s_2^2}{n_1 + n_2 - 2} = \frac{10 \cdot 0.272 + 12 \cdot 0.230}{22} = 0.249; \quad s^2 = 0.499. \]

По формуле (4.7) проверяется значимость нулевой гипотезы об одинаковости средних \(\bar{O}_1 \) и \(\bar{O}_2 \).

Нулевая гипотеза отвергается, если

\[|0.45 - 0.69| = 0.24 \geq t_{1-p}(n_1 + n_2 - 2) \cdot 0.499 \cdot \frac{1}{\sqrt{11}} + \frac{1}{\sqrt{13}} = 0.064. \]

Неравенство соблюдается, значит, нулевую гипотезу о равенстве выборочных средних для бинарной оценки риска обучаемыми первой и второй групп следует отвергнуть. Это позволяет сделать вывод о том, что применение методики обучения действиями в НшС статистически значительно повышает бинарную оценку риска.
г) расчеты времени на подготовку принятия решения

1. По формуле (4.2) рассчитывается среднее время на подготовку принятия решения. Оно равно: для обучаемых первой группы \(\bar{t}_{n_1} = 47,55 \), для обучаемых второй группы \(\bar{t}_{n_2} = 48,54 \).

2. По формуле (4.3) рассчитываются дисперсии для каждой группы:

 \[
 s_1^2 = \frac{7,55^2 + 7,45^2 + 9,55^2 + 5,55^2 + 4,45^2 + 14,45^2 + 6,45^2 + 1,45^2 \cdot 2 + 8,55^2 + 4,55^2}{11 - 1} = \frac{602,7}{10} = 60,27 ;
 \]
 \[
 s_2^2 = \frac{4,54^2 \cdot 2 + 4,46^2 + 2,54^2 + 6,46^2 + 7,54^2 + 9,46^2 + 8,46^2 \cdot 2 + 6,54^2 + 1,54^2 + 9,54^2 + 0,54^2}{13 - 1} = \]
 \[
 = \frac{535,21}{12} = 44,60
 \]

3. По формуле (4.4) рассчитываются дисперсии оценок выборочных средних значений для каждой группы обучаемых:

 \[
 s_{\bar{t}_1}^2 = \frac{60,27}{11} = 5,48 ;
 \]
 \[
 s_{\bar{t}_2}^2 = \frac{44,60}{13} = 3,43 .
 \]

4. По формуле (4.5) проверяется значимость нулевой гипотезы о равенстве дисперсий \(s_1^2 \) и \(s_2^2 \). Уровень значимости \(p \) равен 0,05.

 Нулевая гипотеза (о равенстве дисперсий выборок) не отвергается, если

 \[
 \frac{1}{F_{1, p/2}^2(n_2 - 1, n_1 - 1)} \leq \frac{60,27}{44,60} \leq F_{1, p/2}^2(n_1 - 1, n_2 - 1),
 \]
 \[
 0,357 \leq 1,351 \leq 2,9 .
 \]

 Неравенство соблюдается, нулевая гипотеза верна. Для проверки гипотезы о равенстве среднего времени подготовки принятия решения обучающихся первой и второй групп можно использовать критерий Стьюдента.

5. Поскольку использование КАОС может приводить и к увеличению времени подготовки принятия решения, целесообразно использовать двусторонний критерий.

 По формуле (4.8) рассчитывается средневзвешенная дисперсия обеих выборок:
По формуле (4.6) проверяется значимость нулевой гипотезы о равенстве средних \(\bar{t}_{n1} \) и \(\bar{t}_{n2} \).

Нулевая гипотеза отвергается, если для двустороннего критерия

\[
|47,55 - 48,54| = 0,99 \geq t_{1- \alpha/2} (n_1 + n_2 - 2) \cdot 7,19 \cdot \frac{1}{\sqrt{11}} + \frac{1}{\sqrt{13}} = 6,10.
\]

Неравенство не соблюдается, значит, нулевая гипотеза о равенстве выборочных средних значений времени подготовки принятия решения обучаемых первой и второй групп верна. Это можно объяснить тем, что принятие решения с использованием КАОС, с одной стороны, даёт возможность учитывать большее количество факторов при принятии решения, а с другой стороны, требует большего времени для их анализа и учета. Кроме того, критерий минимума времени не использовался в данном исследовании. Его использование в условиях ограниченного времени на принятие решения по выходу из НШС, возможно, потребует другой постановки задачи.

4.7 Анализ результатов экспериментальных исследований

По результатам экспериментальных исследований можно сделать вывод о том, что по обобщенному показателю и по трем частным показателям использование предлагаемой КАОС в процессе обучения специалистов даёт значительно лучшие результаты (на уровне значимости 0,05). Результаты обработки эксперимента по четвертому частному показателям (среднее время подготовки принятия решения) не подтвердили преимущества КАОС перед традиционными методами обучения. Это можно объяснить следующими причинами:

- критерий минимума времени подготовки принятия решения не использовался в данном исследовании, что предполагало соответствующую работу обучаемых;
- принятие решения с использованием КАОС в целом требует большего времени для их анализа и учета, особенно при отсутствии навыков принятия решения, что имело место для всех обучаемых.

Этот показатель целесообразно использовать в том случае, когда ко времени подготовки принятия решения можно предъявить обоснованные требования, связанные с ограничением продолжительности выхода из НшС, и проверить их выполнение.

Выводы по главе 4

1. Разработана методика обучения персонала с применением КАОС, реализующая индивидуальную образовательную траекторию, учитывающая различные факторы образовательного процесса: объем и сложность учебного материала, предлагаемой помощи, уровень способностей обучаемого.

2. На основе разработанного научно-методического аппарата проведен ретроспективный анализ действий персонала в реальной НшС, произошедшей в 1972 г. на космодроме Плесецк. Выявлены неверные принимаемые решения, а также обоснованные решения, которые могли бы привести к выполнению задачи, а на поздних этапах развития ситуации – к предотвращению катастрофы.

3. Для оценки эффективности использования разработанной КАОС при профессиональной подготовке персонала был проведен эксперимент, в котором участвовали две учебные группы, одна из которых обучалась на КАОС, а вторая – с использованием только штатной ЭД.

В качестве обобщенного показателя уровня обученности предложен средний балл учебной группы, определяемый на основе балльных оценок, выставленных преподавателем.

В качестве частных показателей уровня обученности предлагаются:

- количество учтенных факторов каждым обучающимся при принятии решения;
- количество возможных вариантов развития нештатной ситуации, рассматриваемое каждым обучаемым;

- бинарная оценка риска возникновения аварии каждым обучаемым по результатам анализа исходной информации;

- время на подготовку принятия решения.

4. Обработка результатов эксперимента проводилась на основе аппарата математической статистики. Средний балл обучаемых первой группы (при обучении которой использовалась КАОС) оказался статистически значимо выше среднего балла второй группы, что свидетельствует об эффективности применения КАОС.

5. Результаты обработки эксперимента по трем частным показателям (количество учтенных при принятии решения факторов, количество рассматриваемых вариантов развития НшС; бинарная оценка риска возникновения аварии) также показали эффективность применения КАОС.

6. Результаты обработки эксперимента по четвертому частному показателю (среднее время подготовки принятия решения) не подтвердили преимущества КАОС. Критерий минимума времени подготовки принятия решения не использовался в данном исследовании. Принятие решения с использованием КАОС в целом требует большего времени для их анализа и учета.
В диссертационной работе получены следующие результаты, имеющие научное и практическое значение:

1. Проведен анализ основных особенностей эксплуатации авиационной и ракетно-космической техники, выявлены их общие черты. Одной из основных особенностей эксплуатации АРКТ является частое возникновение НшС, выход из которых связан с необходимостью подготовки и принятия решений. Неверное решение может привести к значительному ущербу и тяжким последствиям. Поэтому в системе профессиональной подготовки эксплуатирующего персонала должно быть предусмотрено обучение действиям в НшС.

2. Сделан вывод о том, что одним из основных направлений повышения качества сложившейся системы подготовки эксплуатирующего персонала АРКТ является использование концепции комплексной автоматизированной обучающей системы на основе современных информационных технологий. Это позволяет, во-первых, объединить различные информационные ресурсы в одном комплексе, во-вторых, моделировать самые разнообразные ситуации, которые могут возникнуть при эксплуатации реального объекта, в-третьих, обеспечить оперативный доступ обучающихся к необходимой информации при решении прикладных профессиональных задач, в частности, подготовки и принятия решений по выходу из НшС.

3. Предложена структурно-функциональная модель КАОС, обеспечивающая решение задач сопровождения эксплуатации АРКТ, профессиональной подготовки персонала наземных служб эксплуатации АРКТ, а также решение задач аттестации персонала, автоматизации рабочих мест и поддержки принятия решений. Одной из основных особенностей разработанной структурно-функциональной модели является модуль моделирования, обеспечивающий функционирование математических моделей оборудования и технологических процессов.
Даны характеристики основных подсистем КАОС, разработанных в процессе создания учебно-тренировочных средств и средств поддержки эксплуатации для персонала, эксплуатирующего объекты наземной космической инфраструктуры космодромов Плесецк и Байконур.

4. Разработана модель развития НшС как многошаговая последовательность принимаемых решений. Исходное состояние объекта эксплуатации обусловлено внешним проявлением НшС, а последующие изменения его состояния – принимаемыми руководителем процесса решениями. Обосновано применение математического аппарата теории игр для определения стратегий поведения ЛПР по выходу из НшС. Процесс возникновения и развития НшС представлен в виде антагонистической игры с двумя участниками: ЛПР и НшС.

5. Проведен анализ возможных стратегий ЛПР по выходу из НшС с учетом различных сценариев ее развития. Разработана модель оценивания последствий возможных решений по выходу из НшС, учитывающая возможный ущерб не только от аварии, но и от невыполнения целевой задачи.

6. На основе допущений о влиянии показаний средств измерений на конечный результат эксплуатационного процесса предложены модели расчета вероятностей выполнения и невыполнения целевой задачи в зависимости от класса точности средств измерений.

7. На основе теории нечетких множеств с использованием лингвистических переменных разработаны модели расчета возможностей реализации различных сценариев развития НшС.

8. Проведен анализ критериев принятия решений по выходу из НшС, обоснован выбор критерия Гурвица, применение которого позволяет адекватно решать поставленную задачу.

9. Предложена алгоритмическая модель принятия решения по выходу из НшС, представляющая собой последовательность действий на каждом шаге принятия решения с заранее неизвестным количеством шагов.

10. Разработана методика обучения персонала с применением КАОС, реализующая индивидуальную образовательную траекторию и учитывающая
такие факторы образовательного процесса, как объем и сложность учебного материала, объем предлагаемой помощи, уровень способностей обучаемого.

11. Для проверки эффективности полученных результатов были проведены экспериментальные исследования, для которых были сформированы две учебные группы: в первой обучение выполнялось с применением КАОС, во второй – по традиционным методикам, используя только штатную ЭД.

В качестве показателей качества профессиональной подготовки использовались один обобщенный и четыре частных показателя. Обработка результатов эксперимента проводилась на основе аппарата математической статистики. Результаты обработки эксперимента по обобщенному и трем частным показателям показали эффективность применения КАОС.

11. На основе разработанного научно-методического аппарата проведен ретроспективный анализ действий персонала в реальной НшС, произошедшей в 1972 г. на космодроме Плесецк. Выявлены неверные принимаемые решения, а также обоснованные решения, которые могли бы привести к выполнению задачи, а на поздних этапах развития ситуации – к предотвращению катастрофы.

12. Дальнейшие направления развития КАОС могут состоять в разработке и включении в ее состав каналов психофизиологического мониторинга и социально-экономической безопасности деятельности персонала, а также адаптации КАОС для подготовки летного состава и внешних пилотов дистанционно пилотируемых ВС.

Таким образом, полученные в работе результаты дают основание сделать вывод о том, что цель диссертационного исследования достигнута.
СПИСОК СОКРАЩЕНИЙ И УСЛОВНЫХ ОБОЗНАЧЕНИЙ

<table>
<thead>
<tr>
<th>Сокращение</th>
<th>Полное обозначение</th>
</tr>
</thead>
<tbody>
<tr>
<td>АОС</td>
<td>автоматизированная обучающая система</td>
</tr>
<tr>
<td>АП</td>
<td>авиационное происшествие</td>
</tr>
<tr>
<td>АПК</td>
<td>аппаратно-программный комплекс</td>
</tr>
<tr>
<td>АРКТ</td>
<td>авиационная и ракетно-космическая техника</td>
</tr>
<tr>
<td>АРМ</td>
<td>автоматизированное рабочее место</td>
</tr>
<tr>
<td>АРМО</td>
<td>автоматизированное рабочее место обучающегося</td>
</tr>
<tr>
<td>АТ</td>
<td>авиационная техника</td>
</tr>
<tr>
<td>БАС</td>
<td>беспилотная авиационная система</td>
</tr>
<tr>
<td>БП</td>
<td>безопасность полетов</td>
</tr>
<tr>
<td>БД</td>
<td>база данных</td>
</tr>
<tr>
<td>ВАК</td>
<td>высшая аттестационная комиссия</td>
</tr>
<tr>
<td>ВВП</td>
<td>валовой внутренний продукт</td>
</tr>
<tr>
<td>ВС</td>
<td>воздушное судно</td>
</tr>
<tr>
<td>ВТ</td>
<td>воздушный транспорт</td>
</tr>
<tr>
<td>ВЦЗ</td>
<td>выполнение целевой задачи</td>
</tr>
<tr>
<td>ЗИП</td>
<td>запасные части, инструменты и принадлежности</td>
</tr>
<tr>
<td>ЗНС</td>
<td>заправочно-нейтрализационная станция</td>
</tr>
<tr>
<td>ИАС</td>
<td>инженерно-авиационная служба</td>
</tr>
<tr>
<td>ИКАО</td>
<td>Международная организация гражданской авиации (ICAO)</td>
</tr>
<tr>
<td>ИОТ</td>
<td>индивидуальная образовательная траектория</td>
</tr>
<tr>
<td>ИТ</td>
<td>индивидуальный тренажер</td>
</tr>
<tr>
<td>ИЭД</td>
<td>интерактивный электронный документ</td>
</tr>
<tr>
<td>ИЭТР</td>
<td>интерактивное электронное техническое руководство</td>
</tr>
<tr>
<td>КА</td>
<td>космический аппарат</td>
</tr>
<tr>
<td>КАОС</td>
<td>комплексная автоматизированная обучающая система</td>
</tr>
<tr>
<td>КГЧ</td>
<td>космическая головная часть</td>
</tr>
<tr>
<td>КОС</td>
<td>компьютерное обучающее средство</td>
</tr>
<tr>
<td>КРТ</td>
<td>компоненты ракетных топлив</td>
</tr>
<tr>
<td>КСОТ</td>
<td>компьютерная система обучения и тренажа</td>
</tr>
<tr>
<td>КСТ</td>
<td>компьютерная система тестирования</td>
</tr>
<tr>
<td>КТ</td>
<td>коллективный тренажер</td>
</tr>
<tr>
<td>ЛА</td>
<td>летательный аппарат</td>
</tr>
<tr>
<td>ЛПР</td>
<td>лицо, принимающее решение</td>
</tr>
<tr>
<td>МнКА</td>
<td>многоразовый космический аппарат</td>
</tr>
<tr>
<td>МЧС</td>
<td>Министерство по чрезвычайным ситуациям</td>
</tr>
<tr>
<td>НАКУ</td>
<td>наземный автоматизированный комплекс управления</td>
</tr>
<tr>
<td>НКИ</td>
<td>наземная космическая инфраструктура</td>
</tr>
<tr>
<td>НП</td>
<td>наземное происшествие</td>
</tr>
<tr>
<td>НТО</td>
<td>наземное технологическое оборудование</td>
</tr>
<tr>
<td>НшС</td>
<td>нештатная ситуация</td>
</tr>
<tr>
<td>ОКР</td>
<td>опытно-конструкторская работа</td>
</tr>
</tbody>
</table>
ОП – обучающая программа
ПАП – подсистема аттестации персонала
ПИК – полигонный измерительный комплекс
ПК – программный комплекс
ПМБ – правила и меры безопасности
ППД – подсистема информационной поддержки профессиональной деятельности
ППР – подсистема поддержки принятия решений при возникновении НшС
РБ – разгонный блок
РД – руководящий документ
РКК – ракетно-космический комплекс
РКН – ракета космического назначения
РКО – ракетно-космическая отрасль
РКТ – ракетно-космическая техника
РН – ракета-носитель
РТОП – радиотехническое обеспечение полетов
СА – спускаемый аппарат
СИ – средство измерений
СК – стартовый комплекс
СНЭСТ – система наземного электроснабжения спецтоками
СПР – система поддержки принятия решений
СТС – сложная техническая система
СУ – система управления
СЧ – составная часть
ТЗ – техническое задание
ТК – технический комплекс
ТМИ – телеметрическая информация
ТП – технологический процесс
УТС – учебно-тренировочное средство
ФГОС – Федеральный государственный образовательный стандарт
ФИ – фиктивный игрок
ФКП – Федеральная космическая программа
ЭВМ – электронная вычислительная машина
ЭД – эксплуатационная документация
ЭИУ – электронный интерактивный учебник
ЭРТОС – эксплуатация радиотехнического оборудования и электросвязи
ЭЦ – эксплуатационный цикл
СПИСОК ЛИТЕРАТУРЫ

3. Управление безопасностью полетов. Приложение 19 к Конвенции о международной гражданской авиации. – Издание 1, ИКАО, 2013. – 44 с.
5. Постановление Правительства Российской Федерации от 15 апреля 2014 года № 319 «Об утверждении государственной программы Российской Федерации «Развитие транспортной системы»
10. ГОСТ Р 22.0.07-95. Безопасность в чрезвычайных ситуациях. Источники техногенных чрезвычайных ситуаций. Классификация и номенклатура поражающих факторов и их параметров. – М. : ИПК Издательство стандартов, 1996. – 10 с.
11. ГОСТ Р В 29.05.005-95 Тренажеры военной техники. Общие эргономические требования. – М. : ИПК Издательство стандартов, 1997. – 15 с.
13. Правила расследования авиационных происшествий и авиационных инцидентов с государственными воздушными судами в Российской Федерации. – Утв. Постановлением Правительства Российской Федерации от 2 декабря 1999 г. № 1329.

14. Правила расследования авиационных происшествий и авиационных инцидентов с экстремальными воздушными судами в Российской Федерации. – Утв. Постановлением Правительства Российской Федерации от 4 апреля 2000 г. № 303.

18. Приказ Министерства образования и науки РФ от 30 июля 2014 г. N 891 «Об утверждении ФГОС высшего образования по направлению подготовки 25.06.01 Аэронавигация и эксплуатация авиационной и ракетно-космической техники (уровень подготовки кадров высшей квалификации)». Электронный ресурс]. – Режим доступа : www.fgosvo.ru.

24. Бармин, И. В. Концепция управления состоянием сложных технических комплексов за пределами плановых сроков эксплуатации / И. В. Бармин, Р. М. Юсупов, В. Е. Прохорович, А. И. Птушкин // Информационные

39. Гавриков, В. Л. Две динамические модели обучения типа «кошки Тронтайка» / В. Л. Гавриков, Р. Г. Хлебопрос // Вестник Красноярского государственного

43. Голицына, И. Н. Эффективность использования моделирующей учебной системы в вузе / И. Н. Голицына, В. И. Немтарев // Профессиональное образование. – 1999. – № 3. – С. 54-56.

49. Довженко, В. Н. Использование современных информационных технологий в системе подготовки кадров для ВМФ / В. Н. Довженко, В. Б. Рисунков, А. М. Стручков, О. М. Туровский // Морской сборник. – 2009. – № 12.

50. Дозорцев, В. М. Компьютерные тренажеры для обучения операторов технологических процессов: Теория, методология построения и использования: дис. ... д-ра техн. наук: 05.13.01 / Дозорцев Виктор Михайлович. – М., 1999. – 442 с.

51. Доклад Генерального секретаря ИКАО Райсона Бенджамена – дополнение к

61. Информация о службе ЭРТОС для сайта Санкт-Петербургского центра ОВД [Электронный ресурс]. – Режим доступа: http://atcspb.ru/?page_id=836

64. Ковалев, А. П. Концепция подготовки специалистов по эксплуатации космических средств в образовательных учреждениях высшего профессионального образования / А. П. Ковалев, В. И. Савченко, В. И. Звягин, Е. Н. Шаповалов // Материалы VI международной Конференции по

73. Крыжановский, Г. А. К вопросу формализации предпочтений активных элементов в системе организации воздушного движения / Г. А. Крыжановский, В. В. Купин // Научный вестник МГТУ ГА. – № 171(9) – 2011. – С. 114-120.

75. Крыжановский, Г. А. Модельный тренажер для обучения руководителей ОрВД / Г. А. Крыжановский, Б. И. Прищепин // Проблемы эксплуатации и совершенствования транспортных систем. Межвузовский тематический сборник научных трудов. СПб ГУ ГА. – 2006.

76. Крюкова, О. П. Самостоятельное изучение иностранного языка в компьютерной среде (на примере английского языка) / О. П. Крюкова. – М. :

86. Куклев, Е. А. Системное математическое моделирование в гражданской авиации / Е. А. Куклев // Тезисы текстов лекций для аспирантов ГУГА. –
112. Остапченко, Ю. Б. Алгоритм проектирования процесса формирования
181

113. Остапченко, Ю. Б. Методика формирования когнитивных компетенций по выходу из нештатных ситуаций для эксплуатирующего персонала авиационной и ракетно-космической техники / Ю. Б. Остапченко, С. А. Кудряков, Е. Н. Шаповалов, С. А. Беляев // Теория и практика современной науки. – 2016. – № 1(7).

114. Остапченко, Ю. Б. Персонализация процесса обучения персонала действиям в нештатных ситуациях при эксплуатации комплексов авиационной и ракетно-космической техники / Ю. Б. Остапченко, С. А. Кудряков, Е. Н. Шаповалов, С. А. Беляев // Теория и практика современной науки. – 2016. – № 2(8).

115. Остапченко, Ю. Б. Реализация индивидуальной образовательной траектории в комплексных автоматизированных обучающих системах / Ю. Б. Остапченко, С. А. Кудряков, С. А. Беляев // Теория и практика современной науки. – 2016. – № 8 (14).

123. Пуликовский, Е. И. Статистические методы анализа и обработки наблюдений /
125. Развитие организационных и методологических аспектов теории и практики расследования причин происшествий на объектах ракетной, ракетно-космической и авиационной техники / Под общей редакцией А. Г. Мильковского. – Королев : ФГУП ЦНИИмаш, 2015. – 334 с.
127. РД 03-409-01. Методика оценки последствий аварийных взрывов топливо-воздушных смесей. – Утв. постановлением Госгортехнадзора России от 26.06.2001 г. № 25.
129. РД 03-496-02. Методические рекомендации по оценке ущерба на опасных производственных объектах. – Утв. постановлением Госгортехнадзора России от 29.10.2002 г. № 63.
136. Семенюк, Э. П. Информатизация общества, культура, личность / Э. П. Семенюк // Организация и методика информационной работы : сборник

150. Чабаненко, П. П. Моделирование обучения операторов человеко-машинных систем / П. П. Чабаненко // Высшее образование в XXI веке: Информация-

156. Штовба, С. Д. Введение в теорию нечетких множеств и нечеткую логику [Электронный ресурс] / С. Д. Штовба // Проектирование систем управления. – Режим доступа: http://matlab.exponenta.ru/fuzzylogic/book1/1_7.php#1_7_1

161. Юрков, Н. К. Интеллектуальные компьютерные обучающие системы :
ПРИЛОЖЕНИЕ А

Основные термины и определения, используемые в работе

Авария — происшествие, не связанное с гибелью людей, находившихся на борту воздушного судна (ВС), при котором ВС получило такие повреждения, вследствие которых его восстановление является нецелесообразным, либо потеря ВС из-за невозможности или нецелесообразности его эвакуации после вынужденной посадки независимо от полученных им повреждений, при условии спасения людей, находившихся на борту ВС [117].

Авария — происшествие, возникшее в результате аварийной ситуации, без гибели людей и причинения вреда здоровью персонала и населения, повлекшее за собой полное или частичное повреждение (разрушение) объекта деятельности, либо нанесение вреда сопрягаемым объектам и окружающей среде, не требующее проведения природовосстановительных мероприятий, либо приведшее к невыполнению задач по назначению [110].

Аварийная ситуация — ситуация, характеризующаяся недопустимым повышением психологической нагрузки на экипаж или недопустимым ухудшением характеристик устойчивости и управляемости, летно-технических характеристик ВС или достижением (превышением) предельных параметров полета (расчетных условий) [117].

Авиационное происшествие — событие, происшедшее вовремя полета и связанное с нарушением нормального функционирования ВС, экипажа, персонала служб обеспечения и управления полетами, с воздействием внешних геофизических факторов, которые привели к гибели людей, находящихся на борту воздушного судна, значительному его повреждению или утрате. Авиационные происшествия в зависимости от степени их последствий подразделяются на аварии и катастрофы [117].
Инцидент с воздушным судном (ВС) - событие во время полета, обусловленное возникновением сложной ситуации и связанное с нарушением нормального функционирования ВС, экипажа, персонала служб обеспечения и управления полетами, воздействием внешних геофизических факторов, которое не закончилось авиационным происшествием [117].

Катастрофа – авиационное происшествие, при котором разрушение ВС, нарушение функционирования его систем или воздействие внешних геофизических факторов повлекло гибель одного или нескольких лиц из числа находившихся на его борту, а также если смерть указанных лиц явилась результатом авиационного происшествия и последовала в течение десяти суток с момента этого происшествия [117].

Катастрофа – происшествие, повлекшее за собой человеческие жертвы, повреждения и/или уничтожение объекта деятельности, материальных средств и/или приведшее к нанесению ущерба сопрягаемым объектам и природной среде, требующее проведения природовосстановительных мероприятий [110].

Катастрофическая ситуация – особая ситуация, при которой предотвращение гибели экипажа (пассажиров) и/или потери ВС практически невозможно [117].

Личностный фактор – совокупность индивидуальных, профессионально важных качеств персонала (профессиональных, физиологических, психологических), которые в условиях взаимодействия с эксплуатируемой материальной частью могут приводить к возникновению ошибочных действий [117].

Непредвиденная нештатная ситуация – нештатная ситуация, появление которой не рассматривалось в процессе создания объекта деятельности [28, 110].
Несчастный случай — гибель, увечье, травмирование с временной потерей трудоспособности хотя бы одного человека в результате воздействия опасного фактора [110].

Нештатная ситуация — ситуация, при которой состояние объекта деятельности характеризуется любым отклонением от заданной (штатной) программы функционирования и может привести к аварийной ситуации [110, 117].

Опасный фактор — событие или совокупность событий, проявление которых в полете может привести к возникновению и развитию особой ситуации и, в конечном итоге, к авиационному происшествию [117].

Особая ситуация — ситуация, возникшая в полете в результате воздействия опасных факторов. В зависимости от степени опасности определяются следующие усложнения условий полета: сложная, аварийная и катастрофическая [117].

Ошибочные действия — неправильные (несвоевременные) действия (бездействие) персонала без наличия умысла действовать в нарушение установленных правил [117].

Предусмотренная нештатная ситуация — нештатная ситуация, которая выявлена и исследована в процессе создания объекта деятельности и внесена в эксплуатационную документацию [28, 110].

Происшествие — событие, повлекшее несчастный случай с гибелью или увечьем людей, причинение материально-технического ущерба или другие тяжкие последствия при отсутствии состава преступления в действиях персонала [110]. Происшествие — событие, которое квалифицируется в зависимости от тяжести последствий как авария или катастрофа [117].
Серьезный инцидент с ВС - событие во время полета, обусловленное возникновением аварийной ситуации, которое не закончилось авиационным происшествием [117].

Сложная ситуация – особая ситуация, при которой возможности и квалификация экипажа и расчетов органов управления воздушным движением, а также резервы работоспособности авиационной техники достаточны для предотвращения авиационной происшествия. Предотвращение перехода ее в аварийную достигается своевременными и правильными действиями экипажа [117].

Усложнение условий полета (усложненная ситуация) – особая ситуация, при которой полет может быть благополучно завершен без особых экстремальных действий экипажа [117].

Человеческий фактор – совокупность профессиональных, физиологических, антропометрических, психологических и социальных возможностей и ограничений человека, неучет которых в конструкции материальной части, в условиях и организации ее эксплуатации и применения может приводить к ошибочным действиям [117].