министерство транспорта российской федерации федеральное агентство воздушного транспорта фгбоу впо «Санкт-петербургский государственный университет гражданской авиации»

Кафедра «Авиационной техники»

ГИДРАВЛИКА

ПОСОБИЕ по изучению дисциплины

для студентов заочного обучения

1. Обшие положения

1.1. Цель преподавания дисциплины

Целями освоения дисциплины «Гидравлика» являются создание фундамента для изучения законов равновесие и движение жидкости и применении этих законов при решении авиационных задач и в других отраслях промышленности при конструировании гидравлических машин.

1.2. Задачи изучения дисциплины

(необходимый комплекс знаний и умений)

Для достижения поставленных целей в рамках дисциплины решаются следующие задачи:

- обеспечить овладение основные понятия и законы механики жидких и газообразных сред;
 - модели течения жидкости и газа
- уметь прилагать полученные знания к решению соответствующих задач гидравлики в своей профессиональной деятельности;
- иметь представление о теории подобия и размерности в процессах движения жидкости и газа;
 - об основах моделирования гидромеханических явлениях;
 - об экологических задачах в потоках жидкости и газа;
- дать студентам представление об основных понятиях и законах методами расчета жидких и газовых потоков;
- приемами постановки инженерных задач для решения их коллективом специалистов различных направлений.

В результате освоения дисциплины обучающийся должен:

знать:

- дифференциальные уравнения гидростатики и гидродинамики идеальных и реальных жидкостей и методы их составления;
- методы решения дифференциальных уравнений гидростатики для конкретных условий;

- конструкции гидравлических машин, их недостатки и преимущества;
- принцип действие приборов для измерения физических свойств жидкости и параметров движения и состояния жидкости;
- методы расчета трубопроводов, подбора насосов и регулирование их подачи;
- принцип действия и основные конструкции гидропривода, распределительных и следящих устройств.

уметь:

- рассчитывать и строить эпюры абсолютного и избыточного гидростатического давления на поверхности резервуаров, трубопроводов, запорной и регулирующей арматуры;
- определять гидравлические потери на трение при транспортировке жидкости по магистралям;
 - подбирать насос для заданной гидравлической сети.

владеть:

- в решении прикладных задач по определению силы давления на плоские и криволинейные поверхности;
- в построении напорных и пьезометрических линий при напорном течении жидкости;
- в расходомерных устройствах и построении рабочих характеристик центробежных насосов;
 - в составлении алгоритмов расчета для решения задач на ЭВМ;
 - в использовании справочной литературы при решении прикладных гидравлических задач.

1.3. Общие методические указания

Каждому студенту рекомендуется вести конспект изучаемой по данной дисциплине литературы.

Кроме самостоятельного изучения материала для студентов читаются в университете обзорные лекции; по основным вопросам курса проводятся прак-

тические занятия. В процессе само- стоятельного изучения дисциплины студенты выполняют контрольную работу.

Материал должен изучаться последовательно согласно данным методическим указаниям. Качество изучения проверяется умением правильно и полно отвечать на вопросы самоподготовки, представленные в конце данной темы. Ответы рекомендуется записывать в конспект по изучению данной дисциплины, который предъявляется при сдаче зачёта.

Студенты могут получать от преподавателей письменную или устную консультацию по интересующим его вопросам данного курса.

1.4. Рекомендуемая литература

а) основная литература:

- 1. Ухин Б.В. Гидравлика. Учебное пособие. М.: ИД «ФОРУМ»: ИНФРА-М., 2009. – 464 с.
 - 2. Штеренлихт Д.В. Гидравлика. М.: КолосС, 2008. 656 с.
- 3. Лапшев И.Н. Гидравлика: Учебник для вузов. М.: Академия, 2008. 272 с.
 - 4. Чугаев Р.Р. Гидравлика. Учебник. Л.: Энергоатомиздат, 1982. 672 c.
- 5. Черваков В.В. Гидравлика и ее применение в ДЛА. Учебное пособие. М.: изд-во МАИ. 1994. 88 с.

б) дополнительная литература:

- 6. Калекин А.А. Основы гидравлики и технической гидромеханики. Учебное пособие для студентов вузов. – М.: Мир. 2008. - 280 с.
- 7. Метревели В.Н. Сборник задач по курсу гидравлики с решениями. Учебное пособие для вузов. – М.: Высш. шк. 2008. – 192 с.
- 8. Альтшуль А.Д., Калинун В.И., Майрановский Ф.Г., Пальгунов П.П. Примеры расчетов по гидравлике. Учебное пособие для вузов. М.: Альянс, 2013. 255 с.
- в) программное обеспечение и Интернет-ресурсы [Электронный ресурс]:

1. Российское образование. Фе- деральные порталы: <u>www.edu.ru</u> и www.fepo.ru

г) базы данных, информационно-справочные и поисковые системы:

1. Электронно-библиотечная система издательства «Лань». Режим доступа: www.e.lanbook.com

2. Содержание дисциплины

2.1. Наименование и содержание разделов (подразделов)

Раздел 1. Основные понятия и положения гидравлики

Вводные сведения. Основные физические свойства несжимаемых жидкостей и газов. Определение понятий сплошной среды и капельной жидкости. Основные физические свойства капельных жидкостей и газов. Закон Ньютона. Ньютоновские и неньютоновские жидкости. Кривые течения. Модель идеальной (невязкой) и реальной жидкости. Силы, действующие в жидкостях. Единичное гидростатическое давление и его свойства. Локальная скорость. Понятия траектории, линии и трубки тока.

Вопросы для самопроверки

- 1. Основные физические свойства несжимаемых жидкостей и газов.
- 2. Определение понятий сплошной среды и капельной жидкости.
- 3. Основные физические свойства капельных жидкостей и газов.
- 4. Закон Ньютона. Ньютоновские и неньютоновские жидкости.
- 5. Кривые течения. Модель идеальной (невязкой) и реальной жидкости.
- 6. Силы, действующие в жидкостях.
- 7. Единичное гидростатическое давление и его свойства.
- 8. Локальная скорость.
- 9. Понятия траектории, линии и трубки тока.

Раздел 2. Гидростатика

Общие законы и уравнения статики жидкостей и газов. Полный дифференциал давления. Понятие поверхности равного давления и вывод ее уравне-

ния. Абсолютный и относительный по- кой (равновесие) жидких и сред. Понятие удельной потенциальной энергии. Закон Паскаля. Сила давления жидкости на твердые поверхности. Сила давления жидкости на плоскую поверхность. Понятие центра давления и глубина его погружения. Эпюра давления. Графическое определение силы давления. Гидростатический парадокс. Сила давления жидкости на криволинейную поверхность. Понятие тела давления. Закон Архимеда и условия плавания тел.

Вопросы для самопроверки

- 1. Общие законы и уравнения статики жидкостей и газов.
- 2. Полный дифференциал давления.
- 3. Понятие поверхности равного давления и вывод ее уравнения.
- 4. Абсолютный и относительный покой (равновесие) жидких и сред. Понятие удельной потенциальной энергии.
 - 5. Закон Паскаля.
 - 6. Сила давления жидкости на твердые поверхности.
 - 7. Сила давления жидкости на плоскую поверхность.
 - 8. Понятие центра давления и глубина его погружения.
 - 9. Эпюра давления. Графическое определение силы давления.
 - 10. Гидростатический парадокс.
 - 11. Сила давления жидкости на криволинейную поверхность
 - 12. Закон Архимеда и условия плавания тел.

Раздел 3. Кинематика жидкости

Основы кинематики. Методы описания движения жидкости. Виды движения. Струйная модель потока жидкости. Понятие объемного и массового расходов. Средняя скорость потока. Уравнение неразрывности газового и жидкостного потока.

- 1. Методы описания движения жидкости.
- 2. Виды движения.
- 3. Струйная модель потока жидкости.

- 4. Понятие объемного и массово- го расходов.
- 5. Средняя скорость потока.
- 6. Уравнение неразрывности газового и жидкостного потока.

Раздел 4. Гидродинамика жидкостей и газов

Общие законы и уравнения динамики жидкостей и газов при установившемся движении. Уравнение Бернулли для элементарной струйки и потока идеальной жидкости и газа. Дифференциальные уравнения движения вязкой жидкости. Вывод уравнений Навье-Стокса. Конечно-разностные формы уравнений Навье-Стокса и Рейнольдса. Уравнение Бернулли для потока реальной жидкости и газа. Удельная кинетическая энергия. Общее уравнение энергии в интегральной и дифференциальной формах. Трубка Пито. Одномерные потоки жидкостей и газов. Графическое изображение уравнения Бернулли. Пьезометрическая и напорная линии. Потери энергии по длине и местные. Зависимость потерь по длине от скорости потока.

- 1. Общие законы и уравнения динамики жидкостей и газов при установившемся движении.
- 2. Уравнение Бернулли для элементарной струйки и потока идеальной жидкости и газа.
 - 3. Дифференциальные уравнения движения вязкой жидкости.
 - 4. Конечно-разностные формы уравнений Навье-Стокса и Рейнольдса.
- 5. Уравнение Бернулли для потока реальной жидкости и газа. Удельная кинетическая энергия.
- 6. Общее уравнение энергии в интегральной и дифференциальной формах.
 - 7. Трубка Пито.
 - 8. Одномерные потоки жидкостей и газов.
 - 9. Графическое изображение уравнения Бернулли.
 - 10. Пьезометрическая и напорная линии.

11. Потери энергии по длине и местные. Зависимость потерь по длине от скорости потока.

Раздел 5. Режимы течения жидкостей в трубах. Гидродинамическое подобие

Режимы течения жидкостей в трубах. Критическая скорость и критическое число Рейнольдса. Ламинарный и турбулентный режимы движения. Турбулентность и ее основные статические характеристики. Потери энергии по длине при ламинарном и турбулентном режиме движения.

Виды местных сопротивлений. Коэффициент местных потерь при ламинарном и турбулентном режимах движения жидкости. Сужающие расходомерные устройства (диафрагма и водомер Вентури). Коэффициенты дроссельного прибора расхода водомера.

Общая интегральная форма уравнений количества движения и момента количества движения. Подобие гидромеханических процессов.

Виды трубопроводов. Самотечный и сифонный трубопроводы. Кавитация и максимальная высота поднятия сифона. Коэффициент сопротивления сети. Уравнение характеристики сети. Короткий и длинный трубопроводы. Водопроводная формула. Четыре случая расчета коротких трубопроводов.

Понятие о волновых процессах. Явление гидравлического удара в трубопроводах. Скорость распространения ударной волны. Формула Жуковского. Работа расширения стенок трубы. Работа сжатия жидкости. Меры по предотвращению гидравлического удара.

- 1. Режимы течения жидкостей в трубах.
- 2. Критическая скорость и критическое число Рейнольдса. Ламинарный и турбулентный режимы движения.
 - 3. Турбулентность и ее основные статические характеристики.
- 4. Потери энергии по длине при ламинарном и турбулентном режиме движения.

- 5. Виды местных сопротивлений. Коэффициент местных потерь при ламинарном и турбулентном режимах движения жидкости.
- 6. Сужающие расходомерные устройства (диафрагма и водомер Вентури). Коэффициенты дроссельного прибора расхода водомера.
- 7. Общая интегральная форма уравнений количества движения и момента количества движения.
 - 8. Подобие гидромеханических процессов.
 - 9. Виды трубопроводов. Самотечный и сифонный трубопроводы.
 - 10. Кавитация и максимальная высота поднятия сифона.
 - 11. Коэффициент сопротивления сети. Уравнение характеристики сети.
 - 12. Короткий и длинный трубопроводы. Водопроводная формула.
 - 13. Четыре случая расчета коротких трубопроводов.
- 14. Понятие о волновых процессах. Явление гидравлического удара в трубопроводах.
- 15. Скорость расространения ударной волны. Формула Жуковского. Работа расширения стенок трубы.
- 16. Работа сжатия жидкости. Меры по предотвращению гидравлического удара.

Раздел 6. Гидравлические машины и гидропривод

Гидравлические машины — насосы и гидродвигатели. Параметры насосов. КПД насосов. Высота всасывания насосов. Устройство и принцип действия центробежных насосов. Осевая сила и способы ее устранения.

Движение жидкости в рабочем колесе центробежного насоса. План и треугольник скоростей. Теоретический напор и подача центробежного насоса. Коэффициент реакции и влияние угла установки лопатки на теоретический напор. Действительный напор. Рабочие характеристики центробежного насоса. Работа насоса на заданную сеть. Рабочая точка. Методы регулирования подачи центробежных насосов.

Устройство и принцип действия насосов объемного типа. Высота всасывания поршневого насоса. Теоретический и действительный напор и подача

поршневых насосов. Ротационные и шестеренчатые насосы. Гидродвигатели возвратно-поступательного и вращательного действия. Насосно-аккумуляторные станции. Мультипликаторы давления.

Вопросы для самопроверки

- 1. Параметры насосов. КПД насосов.
- 2. Высота всасывания насосов.
- 3. Устройство и принцип действия центробежных насосов. Осевая сила и способы ее устранения.
- 4. Движение жидкости в рабочем колесе центробежного насоса. План и треугольник скоростей.
 - 5. Теоретический напор и подача центробежного насоса.
- 6. Коэффициент реакции и влияние угла установки лопатки на теоретический напор.
 - 7. Действительный напор.
 - 8. Рабочие характеристики центробежного насоса.
- 9. Работа насоса на заданную сеть. Рабочая точка. Методы регулирования подачи центробежных насосов.
 - 10. Устройство и принцип действия насосов объемного типа.
- 11. Высота всасывания поршневого насоса. Теоретический и действительный напор и подача поршневых насосов.
 - 12. Ротационные и шестеренчатые насосы.
- 13. Гидродвигатели возвратно-поступательного и вращательного действия
 - 14. Насосно-аккумуляторные станции.
 - 15. Мультипликаторы давления.

Раздел 7. Основы гидро-и пневмопривода

Объемный гидро- и пневмопривод. Структура и типовые схемы. Устройство объемной передачи. Основные энергетические соотношения и внешние характеристики. Передача с поршневым насосом и силовым цилиндром. Пере-

дача с ротационным насосом и сило- вым цилиндром. Передача с ротационным насосом и гидродвигателем ротационного типа.

Регулирование скорости исполнительного органа гидродвигателя. Дроссельное регулирование. Дроссельные регуляторы с постоянным перепадом давления. Объемное регулирование. КПД гидропривода.

Вопросы для самопроверки

- 1.Объемный гидро- и пневмопривод.
- 2. Устройство объемной передачи.
- 3. Основные энергетические соотношения и внешние характеристики.
- 4. Передача с поршневым насосом и силовым цилиндром.
- 5.Передача с ротационным насосом и силовым цилиндром.
- 6. Передача с ротационным насосом и гидродвигателем ротационного типа.
 - 7. Регулирование скорости исполнительного органа гидродвигателя.
- 8. Дроссельное регулирование. Дроссельные регуляторы с постоянным перепадом давления.
 - 9. Объемное регулирование. КПД гидропривода.

Раздел 8. Гидравлический расчет трубопроводов

Расчет простого трубопровода. Расчет последовательно соединенных трубопроводов. Расчет параллельно соединенных трубопроводов. Расчет разветвленных трубопроводов. Трубопровод с насосной подачей жидкости. Общая схема применения численных методов и их реализация на ЭВМ.

- 1. Расчет простого трубопровода.
- 2. Расчет последовательно соединенных трубопроводов.
- 3. Расчет параллельно соединенных трубопроводов.
- 4. Расчет разветвленных трубопроводов.
- 5. Трубопровод с насосной подачей жидкости.
- 6. Общая схема применения численных методов.

3. Перечень тем практических занятий

- ПЗ. Гидравлические расчёты трубопроводов при установившемся напорном движении жидкости.
 - 4. Тема контрольных работ
- 4.1. Устройство, параметры и принцип действия гидравлических машин различного типа.
 - 4.2. Гидравлический расчет трубопроводов различных типов соединения.